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Abstract— Traffic signal control is important for intersection
safety and efficiency. However, most traffic signal control methods
are designed for individual intersections or corridors. Although
some adaptive control systems have been developed, the methods
used are often proprietary and not published, making it difficult
to evaluate their effectiveness. This study proposes an adaptive
multi-input and multi-output traffic signal control method that
not only can improve network-wide traffic operations in terms
of reduced traffic delay and energy consumption, but also is
more computationally feasible than existing centralized signal
control methods. Considering intersection interactions, a linear
dynamic traffic system model was built and adaptively updated
to reflect how the signal control input of each intersection affects
network-wide vehicle travel delay. Based on the system model,
an adaptive linear-quadratic regulator (LQR) was designed to
minimize both traffic delay and incremental changes in the
control input. The proposed control method was evaluated in a
microscopic traffic simulation environment with a 35-intersection
network of Bellevue City, Washington. Simulation results show
that the proposed method had shorter average traffic delays in
the network when compared with the traffic delays controlled
by the state-of-the-art max-pressure, self-organizing traffic lights,
and independent deep Q network methods.

Index Terms— Urban traffic network, traffic signal, linear
quadratic regulator (LQR) control, multi-input and multi-output
(MIMO) system.

I. INTRODUCTION

TRAFFIC congestion caused by intersections leads to
unnecessary travel delays, reduced traffic safety, and
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increased energy consumption and environmental pollu-
tion [1], [2]. To relieve traffic network congestion in large
cities, efficient traffic signal control methods have always
been highly demanded, especially with the rapid advances in
communication and computing technologies [3], [4].

Traffic signal control includes four primary components:
phase specification (sequence of the phases), signal tim-
ing/split control (relative green duration of each phase),
cycle duration, and offset of cycles for coordination among
multiple intersections that are spatially close. Among these
components, signal timing/split control can have the most
profound impact on traffic operations [3], [5]; hence, this study
investigated this research topic.

The early investigation of urban traffic signal control dates
back to the 20th century when traffic lights were first invented.
Since then, a variety of signal timing control methods have
been developed. Generally, these methods can be divided into
two categories: pretimed and traffic-responsive [1]. Pretimed
methods adopt constant green time splits based on historical
traffic demands over the considered signalized urban area. One
of the representative pretimed traffic signal control systems is
TRANSYT (TRAffic Network StudY Tool) [6], which tries
to minimize the overall travel time, delays, and number of
stops. With a fixed green time duration, nevertheless, pretimed
control methods may not be able to handle the dynamics of
real-time traffic conditions.

Aiming at addressing the limitation of pretimed control,
traffic-responsive methods optimize signal timing based on
real-time traffic data. The most common traffic-responsive
signal control method is actuated control. It uses sensors
(e.g., inductive loop detectors) located upstream of the stop
line to sense the request of green time. The method also
predefines minimum and maximum green times and passage
time. On the basis of minimum green time, actuated con-
trol extends the green time by the amount of passage time
once a vehicle is detected until the maximum green time is
reached [1].

Although actuated control is responsive to traffic dynamics
to some extent, it is ideally suited for isolated intersections
in which traffic demands and patterns vary widely throughout
the day [7]. To improve traffic efficiency at a network-wide
level, plenty of emerging traffic signal control methods, such
as evolutionary algorithms [8], [9], heuristics approaches (e.g.,
max pressure [10] and self-organizing traffic light controls
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(SOTL) [11]), fuzzy logic control [12], [13], neural networks
control [14], [15], reinforcement learning based control [16],
[17], and deep reinforcement learning control [18]–[21], [32],
have been proposed. To consider multiple evaluation metrics
(e.g., traffic throughput, traffic delay, safety, and energy con-
sumption), multi-objective optimization algorithms have also
been applied in traffic signal controls to optimize the system
performance [4], [22], [23]. However, they are not widely
deployed in real-world intersections because of their complex
or black-box logics, high performance variances, and special
hardware requirements [24].

For network-level traffic signal control, SCATS (Sydney
Coordinated Adaptive Traffic System) [25], SCOOT (Split
Cycle Offset Optimization Technique) [26], OPAC (Optimiza-
tion Policies for Adaptive Control) [27], and TUC (Traffic-
responsive Urban Control) [28], [29] are the most widely used
traffic-responsive signal control systems [1], [3]. Both SCOOT
and OPAC incorporate a network model that uses real-time
traffic data as an input and computes the corresponding traffic
network performance indices, such as the total number of
vehicle stops. The primary difference between SCOOT and
OPAC is that the former uses heuristic rules whereas the
latter uses dynamic programming. For SCOOT, the central
control computer repeatedly runs the network model and
determines the effect of incremental changes of splits, offsets,
and cycle lengths at individual intersections. The changes
will be submitted to the local signal controllers if they are
predicted to be beneficial in terms of performance indices.
OPAC assumes the phase switching time as a discrete vari-
able and calculates the optimal switching time with dynamic
optimization [1]. TUC adopts a store-and-forward modeling
of the urban network traffic and uses the linear-quadratic
regulator (LQR) theory [30]. The design of TUC results
in a multivariable regulator for traffic-responsive coordinated
network-wide signal control [29].

Although widely used, the aforementioned traffic-responsive
control systems have several limitations and challenges:

• Relying On Off-Line Traffic-Network Models: Although
using real-time traffic data as an input, the net-
work models used by SCOOT and OPAC are built
based on historical data and are not updated during
their real-time operations. Because historical data may
not accurately reflect current traffic conditions [12],
these control strategies may potentially result in poor
performance.

• Exponential Complexity for Global Minimization: Simi-
lar to OPAC, because of the presence of discrete vari-
ables that require exponential-complexity algorithms for
a global minimization, the control strategies may not be
real-time feasible for large-scale traffic networks [31].

• Ignoring Interactions Between Intersections: In TUC,
traffic systems are modeled at intersection level, and the
impacts of the traffic states in neighborhood intersection
and control inputs on the travel delays of investigated
intersection are ignored.

To address these limitations, this study proposes a new
multi-input and multi-output (MIMO) traffic signal control
method that not only improves network-wide traffic operations

in terms of reduced delay and energy consumption, but also is
more computationally feasible than existing centralized signal
control methods. Considering intersection interactions, a linear
dynamic traffic system model was built and updated online to
reflect how signal control inputs at each intersection would
affect network-wide vehicle delays. Based on the system
model, an LQR was built to minimize both traffic delay
and control-input changes. We select LQR because it has
the following advantages over other control strategies from
the control design perspectives: 1) LQR is a simple optimal
control that can be made adaptive in combination with system
parameter estimation; 2) LQR is robust with respect to model
uncertainties and errors as well as unexpected disturbances;
and 3) LQR is easy to be implemented as a MIMO con-
trol strategy that produces a feedback control for a large
networked intersection while automatically accounting for
intersection interactions. The proposed adaptive LQR traffic
control algorithm does not rely on large historic datasets to
identify the unknown traffic model. Moreover, using LQR
control with a MIMO linearized model can achieve mini-
mal traffic delay while considering neighboring intersection
interactions. The proposed control method was implemented
and evaluated in a microscopic traffic simulation environment
with a 35-intersection network of Bellevue City, Washing-
ton. Simulation results show that the proposed method had
shorter average travel delays in the network when compared
with the delays controlled by the methods proposed in the
state-of-the-art max-pressure [10], self-organizing traffic lights
(SOTL, [11]), and independent deep Q network (IDQN)
control [33].

Major contributions of this paper include:
• Proposed a globalized modeling framework for network-

wide traffic signal control using calibrated VISSIM model
via real traffic flow data. In this framework, intersection
interactions were explicitly modeled by a MIMO linear
time-varying traffic system model that reflects how the
signal control input at each intersection affects network-
wide vehicle delay measurements.

• Established an adaptive LQR based traffic signal control
method for traffic networks. The method can identify
unknown system dynamics online, thus being able to
handle system uncertainties caused by traffic and envi-
ronmental randomness.

• Cross-compared the performances of several traffic signal
control methods based on a real-world data-based micro-
scopic traffic simulation model.

The remainder of this paper is organized as follows:
Section II introduces the urban traffic network from downtown
Bellevue, Washington and its simulation model in VISSIM,
which was calibrated using real traffic flow data. Section III
presents the adaptive LQR traffic signal control design.
Section IV describes the traffic signal control methods to be
compared with our design. Section V shows the results of a
simulation study that evaluates and compares the performance
of different traffic signal control designs with the proposed
method. Section VI draws conclusions and discusses future
works.
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Fig. 1. Illustration of (a) traffic count by movement data (left) and (b) traffic
volume data in the road network [34].

II. URBAN TRAFFIC NETWORK AND SIMULATION MODEL

A. Traffic Network

This study focuses on urban road networks with signalized
intersections. Specifically, a grid road network from downtown
Bellevue, Washington was selected as the study area. This
study area covered from Main Street (the south end) to
NE 12th Street (the north end) and from Bellevue Way NE
(the west end) to 112th Ave NE (the east end). It included
35 intersections and 57 major bi-directional road links, with
the average link length being 664.4 ft.

To replicate real-world traffic conditions, traffic count data
by movement were collected for each intersection in the
midday off-peak period (i.e., 1-2 p.m.). Fig. 1a shows the
traffic counts of the northwest corner intersection (i.e., NE
12th Street and Bellevue Way NE) of the study area as an
example. Link traffic volumes were calculated by aggregating
traffic movement counts in the same direction as shown
in Fig. 1b [34].

B. Microscopic Traffic Simulation Model

In this study, PTV VISSIM [35], a commonly used micro-
scopic software for traffic simulation and signal controls, was
used to facilitate the development and testing of different
traffic signal control methods. VISSIM uses Wiedemann car-
following and lane-changing models [36], [37] to model the
movements and interactions of vehicles. The VISSIM traffic
model shown in Fig. 2 was developed based on actual road
geometries of the study area. This microscopic simulation
model has been calibrated by the City of Bellevue with actual
traffic data and has been used for planning and management
purposes in downtown Bellevue [34]. The calibration process
involved adjusting parameters including vehicle composition,
speed distributions, conflict areas, priority rules, reduced speed
areas, and car-following and lane-change behaviors to ensure
that the simulation was consistent with the traffic characteris-
tics of the real world.

III. TRAFFIC SIGNAL CONTROLLER DESIGN

A. Traffic System Modeling

The subject traffic network comprises 35 intersections, and
the green time for each intersection could affect the traffic flow

Fig. 2. Illustration of the VISSIM simulation model for the investigated
urban traffic network [34].

performance of the whole system. In this study, we assume
a fixed signal cycle length (90 s) with two phases: the east
and west (E-W) approaches share one phase, and the north
and south (N-S) approaches share the other phase so as to
simplify the control algorithm formulation. As shown in Fig. 3,
the N-S direction green time of intersection i is denoted as
vi with i = 1, 2, . . . , 35. In practice, both the signal cycle
length and the initial green time can be derived based on
the widely used Webster’s method [38], which considers both
the saturation flow rate and the flow ratio for each lane
group. It is assumed that each intersection had two delay
measurements: one for the N-S direction and the other for the
E-W direction. Therefore, there are a total of 70 delay mea-
surements for the 35 intersections. Mathematically, the traffic
network described in Section II-A can be expressed as a
discrete-time input-output and real-data calibrated model in
VISSIM [35] as:

z(k + 1) = F(z(k), v(k)) (1)

z(k) = [z1, z2, . . . , z70]T (2)

where z(k) ∈ R70 are the system outputs, which are the
measurable traffic delays of N-S and E-W direction vehicle
flows at each node; v ∈ [vmin , vmax ] ∈ R35 are the system
control inputs comprised of all vi , indicating the N-S direction
green times of the intersections; and k denotes the time step
(i.e., the cycle number). F stands for the nonlinear relationship
between traffic delays and the green signal period of the N-S
direction as represented by VISSIM simulation [35].

Assuming that the nonlinearity of the traffic system is
linearizable, one can linearize the system (1) to the state-space
form as

�z(k + 1) = A�z(k) + B�v(k) + w(k), (3)

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 15,2022 at 05:22:03 UTC from IEEE Xplore.  Restrictions apply. 



336 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 1, JANUARY 2022

Fig. 3. Illustration of the notations for signal control inputs and traffic delay
measurements.

where

A =
⎡
⎢⎣

a1,1 . . . a1,70
...

. . .

a70,1 . . . a70,70

⎤
⎥⎦ ∈ R70×70 (4)

B =
⎡
⎢⎣

b1,1 . . . b1,35
...

. . .

b70,1 . . . b70,35

⎤
⎥⎦ ∈ R70×35, (5)

are the system parameters, and �z(k) = z(k) − z(k − 1),
�v(k) = v(k)− v(k − 1) are the increment of z and v at time
step k. w(k) is the bounded linearization error, which satisfies
||w(k)||2 ≤ wb for k = 1, 2, . . . , and wb is the bound for
the error w(k). Based upon our comprehensive linearization
around all the possible operating points of model (1), the value
of wb = 4.5 s in terms of travel delay. This will be used
as a threshold in the normalized least squares algorithm to
be described for estimating A and B matrices. To simplify
notation, we denote �z = y and �v = u, and rewrite the
linearized state-space form as

y(k + 1) = Ay(k) + Bu(k) + w(k). (6)

Because the direct mathematical relationship between traffic
delay and green signal period is unknown, the linearized
parameter matrices A and B are unknown and possibly time-
varying, and we need to design a parameter estimation scheme
to estimate the system parameter matrices A and B online.

Control Objectives: The control objective is to design an
online estimation based LQR controller with unknown system
parameter matrices A and B to minimize the traffic delay
characterized by y(k) with low control energy. This constitutes
the minimization of the following cost function by selecting
an optimal signal timing strategy u(k):

J =
∞∑

k=0

[yT (k)Qy(k) + uT (k)Ru(k)], (7)

where Q = QT > 0 and R = RT > 0 are positive defi-
nite matrices with relevant dimensions. They denote the pre-
specified state-cost weighting matrix and input-cost weighting
matrix, respectively. This is the standard LQR cost function
widely used in the literature [39].

B. Online Parameter Estimation Scheme

Before starting the LQR controller design, one needs to
identify the system parameter matrices A and B using system
identification techniques [40]–[43]. To this end, the linearized
system (6) can be parameterized as follows:

y(k + 1) = ��(k) + w(k), (8)

where

� = [
A B

]
(9)

=
⎡
⎢⎣

a1,1 . . . a1,70 b1,1 . . . b1,35
...

. . .
...

. . .

a70,1 . . . a70,70 b70,1 . . . b70,35

⎤
⎥⎦ ∈ R70×105

(10)

� = [
yT uT

]T
(11)

= [
y1 y2 . . . y70 u1 u2 . . . u35

]T ∈ R105,

(12)

where � groups all the measurable inputs and outputs and is
the information vector used in the estimation of �.

1) Estimation Error: To estimate the system parameter
matrices A and B , we denote �(k) ∈ R70×105 as the estimate
of � at cycle k. Then the estimation error is defined as

ε(k) = �(k − 1)�(k − 1) − y(k) (13)

= �(k − 1)�(k − 1) − ��(k − 1) − w(k − 1) (14)

In this work, we assume that the bound for the linearization
error term w(k) is small, and the effect of the term w(k) can
be neglected in the control design due to the inherent strong
robustness property of LQR control strategy and the use of
the normalized least squares estimation algorithm [44].

2) Parameter Update Law: As it has been shown that the
normalized least squares identification is robust to possible
modeling uncertainties, such as the linearization errors in
(6) [44], it is used here to provide the required estimates for
parameter matrices A and B . The estimation updating rule for
k = 0, 1, 2, . . . is therefore given by:

�(k + 1) =
⎧⎨
⎩

�(k) − P(k − 1)�(k)ε(k)

m2(k)
||ε(k)|| > wb

�(k) ||ε(k)|| ≤ wb

(15)

P(k) = P(k−1)− P(k−1)�(k)�T (k)P(k − 1)

m2(k)
(16)

m(k) =
√

κ + �T (k)P(k − 1)�(k), (17)

where κ > 0 is the pre-specified design parameter normally
less than 0.05. P(k) is a positive definite variance matrix
and its initial value is P(0) = I with I being an identity
matrix. �(0) = �0 is the chosen initial estimates of parameter
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matrices A and B . The above parameter estimation can be
regarded as an online learning process where A and B are
learned using input and output data grouped in � when the
cycle number k increases.

It can be seen that (15) has a switching function, when the
error ε(k) is smaller than or equal to the lower bound of w(k),
the parameter updating is stopped and the k +1 cycle estimate
is its estimate at k. This functionality enhances the robustness
of the estimation algorithm so as to make it robust with respect
to linearization error w(k) [44].

C. LQR Controller Design

When system parameter matrices A and B are known, one
can choose the following LQR state feedback control law as

u(k) = −K y(k), (18)

where the state feedback gain matrix K is obtained by solving
the following Riccati equation for matrices S = ST > 0 and
K simultaneously [39]:

AT S A − S − AT SB K + Q = 0 (19)

K = (BT SB + R)−1 BT S A. (20)

Adaptive LQR Controller: Because system parameter matri-
ces A and B are estimated according to the parameter
update law (15) – (17), one can obtain A(k) and B(k) from
�(k) = [A(k) B(k)] and (15) at each cycle k. Therefore,
the adaptive LQR controller can be obtained by replacing A
and B in (19) and (20) with their estimates at each cycle k.
This leads to the following adaptive LQR control law

u(k) = −K (k)y(k) (21)

where adaptive gain matrix K (k) is obtained by solving the
Riccati equation for matrices S(k) = ST (k) > 0 and K (k) at
each cycle k as follows:

0 = AT (k)S(k)A(k) − S(k) − AT (k)S(k)B(k)K (k) + Q

(22)

K (k) = (BT (k)S(k)B(k) + R)−1 BT (k)S(k)A(k). (23)

D. Adaptive LQR Algorithm Summary

With the real-data calibrated system model (1), the above
adaptive LQR control algorithm is realized in the following
steps:

1) Calibrate VISSIM model (1) using real traffic data so
that system model (1) gives a desired reflection of the
actual system dynamics;

2) At time k, use input and output data from VISSIM
nonlinear system (1) to estimate parameter matrices
{A(k), B(k)} by (15) – (17);

3) For the estimated {A(k), B(k)}, solve the Riccati equa-
tion (22) – (23) for adaptive control gain K (k);

4) Apply control input (21) to the signal timing to all
intersections in Fig. 1 and 3 as represented by system
nonlinear model (1); and

5) Set k = k + 1 and go to Step 2.

Fig. 4. The adaptive LQR closed loop control structure and the information
flow chart.

Fig. 4 shows the closed-loop control structure and the
information flow chart of the above adaptive LQR control
algorithm.

The above algorithm shows that as travel delay state vector
y(k) is assumed measurable, it is used as a state feedback
information in the construction of the closed loop control.

E. Robustness of the Proposed Algorithm

It is worth noting that the control signal calculated from (21)
is directly applied to the nonlinear system (1) which had been
calibrated using real-traffic flow data, rather than to linearized
system (6). The simulation results in the following sections
would show the desired robustness of the proposed algorithm
with respect to the linearization error w(k) in (6). Indeed, as it
has been shown that LQR has a good robustness with respect
to model uncertainties in terms of providing infinite gain
margin [39], the proposed control algorithm is also robust with
regard to the model uncertainties. In addition, the normalized
least squares with switching functionality as shown in (15) is
robust with respect to modelling error w(k) of the system. As a
result, the proposed algorithm is robust because of the use of
LQR together with the normalized least squares algorithm for
the estimation of parameter matrices {A(k), B(k)}.

Moreover, although adding more signal phases at each
intersection could increase the complexity of dynamic signal
timing updates in VISSIM, which is still programmatically
feasible, it will not constitute difficulties in the control design
as this would just increase the dimensionality of input u(k)
and y(k) in (6), while the control design methods remains the
same as those in (21) – (23).

F. Coordination and Scalability Issues

Since the proposed adaptive LQR control is obtained using
the MIMO model in (6), it is a multivariable control that
automatically takes into account of the interactions among
all the intersections as the off-diagonal elements in matrix
A are normally non-zeros, where the coupling feature among
intersections are taken care of when control input vector (21)
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is applied to the system (1). This is the advantage of using
multivariable control to deal with the signal timing for the
networked intersection area as shown in Fig. 1.

Moreover, if more intersections in the traffic network need
to be added, instead of rebuilding the entire traffic model (6),
we can build subsystems relating only to the neighboring
intersections and use our MIMO control algorithm in a decen-
tralized way, which does not alter the core LQR design as
represented in (21) – (23). In this context, our adaptive LQR
control algorithm can be made scalable in practice. Indeed,
the same method can also be made decentralized by using
sub-blocks in matrices A and B , which leads to de-centralized
design equations of the same form as expressed in LQR control
gain solution (see (18) – (23)).

IV. BASELINE METHODS AND ABLATION STUDY

The performance of the proposed method (adaptive LQR
control) was compared with that of three baseline meth-
ods: max-pressure, SOTL, and independent deep Q net-
work (IDQN) control methods. Additionally, an ablation study
was conducted to test the effectiveness of the proposed method
in modeling the system (compared with linear feedback con-
trol) and updating system parameters online (compared with
offline LQR control). All of these signal control methods were
implemented using the VISSIM COM interface.

A. Baseline Methods

1) Max Pressure: The max-pressure traffic signal control
method was inspired by the max pressure algorithm [45] in the
field of communication network, which considers the routing
and scheduling of packet transmission in a wireless network.
Specifically, the max-pressure traffic signal control method
models traffic flows as substances in a pipe and optimizes
traffic signals to maximize the relief of pressure between
incoming and outgoing lanes [33]. The pressure for a certain
phase p is defined as:

Pressure(p) =
∑

l∈L p,inc

|ql | −
∑

l∈L p,out

|ql | (24)

where l stands for traffic lanes; ql is the average vehicle queue
length in lane l during the last updating time interval; L p,inc

is the set of incoming lanes that have green lights in phase
p; and L p,out is the set of outgoing lanes from all incoming
lanes in L p,inc .

The max-pressure method does not have a fixed cycle
length. Instead, the algorithm predefines an updating time
interval (40 s in this study). At the beginning of each time
interval, the algorithm examines the pressures of all signal
phases and chooses phases with the maximum pressure as
green phases in the incoming time interval. According to an
open-source evaluation conducted by Genders and Razavi [33],
the max-pressure method has the best performance compared
with Webster’s method [38], SOTL [46], DQN [47] and deep
deterministic policy gradient (DDPG) [48].

2) SOTL: Similar to the max-pressure method, SOTL [11]
does not have a fixed cycle length. Each red-light phase counts
the cumulative number of vehicles that arrived during its
red light period (ki ). When ki is greater than a predefined
threshold, the current green-light phase switches to red with
ki = 0, while the red light that counted turns green. During
implementation, minimum green phase duration is applied.

3) IDQN: The DQN-based traffic signal control has a
predefined updating time interval, similar to that of max-
pressure control. At the beginning of each time interval,
the DQN agent outputs an action based on the current state.
This action determines which phase will turn green for the
upcoming time interval. We have implemented the independent
DQN-based traffic signal control using the algorithm in [33],
where each intersection had a local DQN agent that took local
state as input and determined actions for that intersection. The
Q networks for these agents were updated independently. The
state, action, reward, and Q network architecture were defined
as follows.

• State: queue and delay of incoming lanes, and the most
recent green phase at each intersection. The queue and
delay are continuous variables, while the most recent
green phase is encoded as a one-hot vector;

• Action: which phase should turn green for the upcoming
time interval? In this study, two phases (N-S and E-W)
were considered;

• Reward: global reward was used, i.e., the negative average
vehicle delay for the whole traffic network was used.
Since the reward function is used only during offline
training, we can assume that the average network delay
is available;

• Q network: two hidden layers of 3|S| fully connected
neurons with the ReLU activation function, where |S| = 6
is the dimension of the state. The output layer has two
neurons corresponding to the two phases.

B. Ablation Study

An ablation study was conducted to further assess the
performance of the proposed adaptive LQR control method.
Two variants of the proposed method were considered in this
ablation study: 1) a linear feedback control, which models
the network system in a simple linearization form between
delay and green time; and 2) an offline LQR method that uses
the same initial A, B matrices as those used in the proposed
method. Considering the performance difference between the
proposed method and the offline LQR method might be
insignificant under normal off-peak volumes since the A, B
matrices were estimated based on off-peak traffic conditions,
the ablation study was conducted using 150% of the off-peak
traffic volumes in VISSIM.

1) Linear Feedback Control: For the linear feedback con-
trol [49], system model (1) is linearized to a simple form:

�z(k) = H�v(k), (25)

where z ∈ R70 are the traffic delays of N-S and E-W direction
vehicle flows at each node, v ∈ [vmin , vmax ] ∈ R35 are N-S
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direction green times of the intersections, and H is the input-
output gain matrix. The feedback control strategy is designed
as:

�z(k) = −�z(k), (26)

where � > 0 is a design parameter. Applying (26) to (25),
one can obtain the controller as:

�v(k) = −(H T H )−1H T �z(k). (27)

This variant uses a simplified system modeling approach
and can be used to determine how system modeling contributes
to the performance of the proposed method.

2) Offline LQR: For the offline LQR method, the system
matrices A and B defined in (4) and (5) were estimated from
historical data and were not updated during the control. This
variant will help show how much gain the adaptive parameter
updating design provides.

V. RESULTS

The proposed method was evaluated in the VISSIM simula-
tion environment with the 35-intersection network of Bellevue,
Washington, as mentioned in Section II. VISSIM traffic sim-
ulation software is a widely used simulation tool especially in
the transportation engineering field. VISSIM uses Wiedemann
car-following and lane-changing models to model the dynamic
movements and interactions of vehicles. Each simulation test
lasted for 5,000 seconds, and 30 runs with different random
seeds were conducted for each test case. The parameter initial
estimates �(0) were chosen within the range [−10, 10] based
upon the linearization tests. The random seed initialized a ran-
dom number generator. With various random seeds, different
value sequences were assigned to the stochastic functions in
VISSIM, and the simulation of stochastic variations of vehicle
arrivals in the network was achieved [35]. This setting affects
the following aspect of the simulation.

• Traffic volume: Given an input traffic volume, the actual
traffic volume will be a stochastic variable with its
expectation being the set one.

• Vehicle arrival: Vehicles arrive with their time headways
following a Poisson distribution. With different random
seeds, vehicle arrival sequences will be different.

• Turn movements: With turn ratio predefined, ran-
dom seeds will affect which vehicles will turn right,
go straight, or left at an intersection.

• Driving behavior: The car-following and lane-change
behavioral models used in VISSIM contain several ran-
dom parts (e.g., at steady-state car following, drivers will
have stochastic accelerations around zero).

The average vehicle delays across the whole simulation
period were used as the primary evaluation metric. To inves-
tigate how the proposed method can handle various initial
traffic states, different initial N-S green times (20 s, 40 s, and
60 s) were chosen. The idea is that an unbalanced initial green
time (e.g., 60 s) will result in a congested initial traffic state,
whereas a balanced initial green time (e.g., 40 s) may lead to
a less congested initial traffic state. In practice, both the signal
cycle length and the initial green time can be derived based

TABLE I

TRAVEL DELAYS WITH DIFFERENT INITIAL GREEN TIMES AND CONTROL
METHODS, UNDER NORMAL OFF-PEAK TRAFFIC VOLUME

Fig. 5. Average vehicle delay during the simulation under normal off-
peak traffic volume. Solid colored lines represent the mean, and shaded areas
represent the mean ± one standard deviation. Results of the IDQN method
were not visualized because of its large delays.

on Webster’s method [38], which considers both the saturation
flow rate and the flow ratio for each lane group. For max-
pressure, SOTL, and IDQN controls, there is no initial green
time because they do not have a fixed cycle length.

A. Comparison With Baseline Methods

Table I presents the performance of the proposed method
against the baseline methods. Given different initial green
times, it can be seen that the LQR method outperformed
max-pressure, SOTL, and IDQN methods, especially when the
initial N-S green time was 40 s. The performance of the IDQN
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Fig. 6. Distribution of average vehicle delays over the simulation period
under normal off-peak traffic volume for comparison among different initial
green times. Results of IDQN were not visualized due to its much larger
delays.

method was much worse than the other methods, and this
result is consistent with the results presented in [18]. The poor
performance of IDQN might be caused by the independence
of the reinforcement learning (RL) agents in different traffic
intersections, where the control algorithm tries to optimize
local traffic situations but fail to cooperate with each other.

Fig. 5 presents the changing of average vehicle delay
along with the progression of the simulation time, with initial
green time = 20 s, 40 s, and 60 s. With any initial green
times, the proposed LQR method outperformed other baseline
methods.

Fig. 6 shows the distribution (violin plot) of average vehicle
delays across the whole simulation period. The violin plot
shows the probability density of the data at different values.
Based on the interquartile range (IQR) inside the violin plots,
it can be observed that the LQR method constantly maintained
smaller values of lower (25%), median (50%), and upper
(75%) quartiles, indicating that its overall performance was
consistently better than other methods compared.

Fig. 7 depicts how the LQR method optimized signal splits
at each intersection cycle-by-cycle over the simulation period.
In the beginning, all the intersections shared the same initial

Fig. 7. LQR control and changes of N-S green time of the 35 intersections
during the simulation test period with different initial N-S green time under
normal off-peak traffic volume.

N-S green time (e.g., 20 s, 40 s, or 60 s). As time progressed,
the N-S green time at each intersection was updated every
cycle (90 s) to reflect the control output designed to minimize
the average travel delay. It can be observed that, at the end
of the simulation, the N-S green times of many intersections
centered around 40 s, which is the balanced green time
between N-S and E-W directions (5 s of yellow and red time
between green phases), indicating that traffic volumes in both
N-S and E-W directions at these intersections were similar.
The N-S green time in some other intersections, nevertheless,
continued to change throughout the simulation period. For
example, with the initial N-S green time being 20 s, almost all
intersections’ N-S green time continued to increase throughout
the simulation. This was caused by insufficient N-S green time
from the beginning and, since the control was adjusted cycle-
by-cycle, traffic in the N-S direction was never cleared at those
intersections. As a result, the proposed LQR method continued
to increase the N-S green time at these intersections to help
push traffic through and minimize average delays.
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TABLE II

RESULTS OF ABLATION STUDY: TRAVEL DELAYS WITH DIFFERENT
INITIAL GREEN TIMES AND CONTROL METHODS, WITH

150% OFF-PEAK TRAFFIC VOLUME

Fig. 8. Results of ablation study: changing of average vehicle delay during
the simulation test period with 150% off-peak traffic volume. Solid colored
lines represent the mean and shaded areas represent the mean ± standard
deviation interval.

B. Ablation Study

Table II and Fig. 8 present the results of the ablation study.
For different initial N-S green times, the proposed adaptive
LQR method outperformed both the linear feedback and the
offline LQR control methods. The results demonstrate that the

system modeling approach and the online parameter updating
strategy of the proposed adaptive LQR method have resulted
in improved control performance.

From the above descriptions, it can be seen that the adaptive
LQR control is actually performed for the nonlinear system
in an adaptive way. It is used for the large-scale nonlinear
model for 35 intersections as given in (1). To the best of our
knowledge, this type of adaptive LQR has not been applied to
such a large network. In the literature below, they tested LQR-
based perimeter control for 16-intersection network [50].

VI. CONCLUSION AND FUTURE WORK

This study proposed an adaptive LQR based signal control
method for large urban traffic networks. A linear dynamic
traffic system model was built and adaptively updated to
reflect how each intersection’s signal control input affects
network-wide vehicle delays. A linear-quadratic regulator was
then built to minimize both traffic delays and control-input
changes. With a predefined cycle length, the proposed algo-
rithm adjusted traffic signal control strategies according to
observed vehicle delays. The proposed control method was
evaluated in the VISSIM traffic simulation environment with
a 35-intersection network of Bellevue city, Washington. Traffic
counts by approach and turn movement were collected for each
intersection to replicate real-world traffic conditions. Simula-
tion results indicate that the proposed method yielded shorter
average travel delays in the network when compared with
the state-of-the-art max-pressure, SOTL, and IDQN methods.
Results of the ablation study also show that the proposed
method outperformed the linear feedback control and the
offline LQR control under 150% traffic volumes, indicating
that the system modeling approach and the online parameter
updating strategy of the proposed adaptive LQR method can
effectively improve the performance.

Despite the demonstrated advantages, the proposed LQR
method in this study has potential limitations, and future
research in the following areas is needed.

• Currently, the proposed method only models a specific
cycle length (90 s) with two phases to find optimal
timing and phasing strategies, different cycle lengths and
phasing combinations should be explored. Looking at
system model (1) or (6), it can be seen that adding
more phases at each intersection is not expected to
constitute much difficulty as this would merely increase
the dimensionality of input u(k) and y(k) in (6), while
the control design method remains the same as those
in (21) – (23).

• The current system model assumes no noise in (1). Future
work is needed to incorporate a stochastic noise term into
the dynamic traffic system model to better account for the
variability of the traffic system.

• The proposed model assumes that the system can be
linearized as shown in (3) or (6). Future work will
consider nonlinear traffic system modeling approaches,
such as bi-linear and neural network models, aiming to
better represent true characteristics of the traffic system.

• The proposed method has been tested in a traffic simula-
tion environment. Implementing the proposed algorithm
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in a real-world traffic corridor/network is needed to test
its effectiveness.
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