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Monitoring Public Transit Ridership Flow
by Passively Sensing Wi-Fi and
Bluetooth Mobile Devices
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Abstract—Real-time public transit ridership flow and origin—
destination (O-D) information is essential for improving tran-
sit service quality and optimizing transit networks in smart
cities. The effectiveness and accuracy of the traditional survey-
based methods and smart card data-driven methods for O-D
information inference have multiple disadvantages in terms of
biased results, high latency, insufficient sample size, and the
high cost of time and energy. By considering the ubiquity of
smart mobile devices in the world, monitoring public transit rid-
ership flow can be accomplished by passively sensing Wi-Fi and
Bluetooth (BT) mobile devices of passengers. This study proposed
a system for monitoring real-time public transit passenger rid-
ership flow and O-D information based on customized Wi-Fi
and BT sensing device. By combining the consideration of the
assumed overlapping feature spaces of passenger and nonpassen-
ger media access control address data, a three-step data-driven
algorithm framework for estimating transit ridership flow and
O-D information is proposed. The observed ridership flow is
used as the ground truth for evaluating the performance of
the proposed algorithm. According to the evaluation results, the
proposed algorithm outperformed all selected baseline models
and the existing filtering methods. The findings of this study can
help to provide real time and precise transit ridership flow and
O-D information for supporting transit vehicle management and
the quality of service enhancement.

Index Terms—Origin—destination (O-D) information, real-time
monitoring system, transit ridership flow, Wi-Fi and Bluetooth
(BT) passive sensing.

I. INTRODUCTION

UBLIC transit ridership flow and origin—destination
(O-D) information are crucial for transit network
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planning, routes optimization, service quality improvements
and travel scheduling [1]-[4]. It is also an essential data input
of Internet of Vehicles (IoV) in transit systems [5]. Traveler
surveys have been employed for acquiring such information in
most of the previous research [6]. However, the effectiveness
and efficiency of the survey-based methods are questionable
in terms of high time and energy cost, and biased results [7].
As the smart card becoming widely used, some researchers
have developed methods for estimating ridership flow and
O-D information based on transit smart card data [8]-[13].
However, most of the transit smart card system only requires
tap-in action, it is hard to infer alighting stops of each pas-
senger real timely. Nowadays, it is stated that more than 80%
of individuals carried at least one Wi-Fi and Bluetooth (BT)
mobile device in daily life [14], [15]. Thus, estimating transit
ridership flow and O-D information based on Wi-Fi and BT
sensing data has the greatest potential to be a more reliable
method.

The basic idea of the Wi-Fi and BT passive sensing tech-
nology is to capture the hardware media access control (MAC)
address of the discoverable mobile devices through Wi-Fi
management frame and BT slave response message [16]. If
the Wi-Fi or BT communication function of a mobile device
is turned on and no existing connections with access points
or other devices through Wi-Fi or BT protocol, then the
mobile device is in the discoverable mode. The hardware MAC
address is a globally unique identifier, it is easy to mon-
itor the boarding and alighting information of a passenger
by identifying the MAC address of the passenger’s mobile
devices.

However, there are still two uncertainties that cause errors
for Wi-Fi and BT sensing-based transit ridership flow monitor-
ing. First, since the detection range of Wi-Fi and BT sensor is
usually larger than the inside space of transit vehicles, the
mobile devices outside transit vehicles are still possible to
be detected. Thus, separating passengers’ MAC address and
nonpassengers’ MAC address is crucial for estimating rider-
ship flow and O-D information from Wi-Fi and BT sensing
data. Previously, several studies shed light on solving this
problem based on filtering methods [17], [18]. Several empiri-
cally predefined thresholds were selected to filter out the MAC
addresses potentially coming from outside of transit vehi-
cles. However, the results of most previous studies are barely
convinced due to the lack of validation based on ground-truth
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data. Since collecting ground truth of O-D information is
costly and labor intensive, only a few studies provided the
comparison of observed ridership flow and the estimated
values [19]-[21]. The obvious gaps between the observed data
and the filtering results indicated that the considerable errors
are caused by such hard-threshold filtering methods. Hence,
an accurate and effective method for separating the MAC
address data belonging to passengers and nonpassengers is
indemand.

The main disadvantages of the filtering method are the
assumed clear boundary between the feature spaces of pas-
senger and nonpassenger data, and the values determination
of the thresholds. To our knowledge, the feature space of
passengers and nonpassengers’ MAC address data is overlap-
ping. For example, when a transit vehicle travels with another
vehicle side by side for a distance, the features of the pas-
sengers’ MAC address data could be similar to the features
of the mobile devices in the other vehicle. Thus, a Fuzzy
C-Means (FCM) clustering algorithm is proposed for sep-
arating passenger and nonpassenger MAC addresses in this
study. FCM is one of the most popular fuzzy-based clustering
algorithms which is suitable for separating the clusters with
ambiguous boundaries [22]. Unlike hard or crisp clustering
algorithms, e.g., K-Means clustering, FCM allows objects to
have the possibility for belonging to all groups with a cer-
tain degree of membership. Previously, FCM was used to
deal with the ambiguous clusters in several scenarios in the
intelligent transportation engineering area, e.g., ship trajec-
tories clustering [23] and traffic volume-based road groups
clustering [24].

Second, since only partial transit passengers carry discov-
erable mobile devices, a method targeting on estimating the
population ridership flow is essential. Previously, several meth-
ods were implemented to estimate the population based on
a sample of Wi-Fi and BT sensing data, including scaling
with a fixed number [25], linear regression [26], power func-
tion, and Fourier function-based methods [27]. Among the
existing methods, Lesani and Miranda-Moreno [27] conducted
a performance comparison of power function and Fourier func-
tion for estimating the population number of pedestrians based
on the detected Wi-Fi and BT MAC addresses. The proposed
power function achieved a relatively high R-squared value
than the Fourier function. In addition, the R-squared value
of the proposed power function is much higher than the linear
regression methods in other studies [28], which could be an
indicator of the nonlinear relationship between the population
and the number of detected MAC addresses. Thus, to handle
nonlinearity among data sets, a random forest (RF) regression
model [29] is proposed for estimating the population ridership
flow in this study, including the number of onboard, boarding,
and alighting passenger. For the performance comparison pur-
pose, linear regression is selected as the baseline model to
indirectly demonstrate the effectiveness of the RF model.

The primary objective of this study is to establish a system
for monitoring real-time public transit ridership flow based
on the Wi-Fi and BT sensing technology. A three-step data-
driven algorithm framework for estimating the real-time transit
ridership flow is proposed. The target parameters include the
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System architecture of the real-time transit ridership flow monitoring

number of onboard, boarding, and alighting passenger, and
O-D information. The main contribution of this research can
be summarized as follows.

1) The system for monitoring real-time public transit rid-
ership flow is designed based on the customized Wi-Fi
and BT sensing devices.

2) A three-step data-driven algorithm framework for min-
ing real-time transit passenger ridership flow from Wi-Fi
and BT sensing data is proposed.

3) The proposed system is implemented on three transit
routes in Seattle. The ground-truth data is collected man-
ually for validating the performance of the proposed
algorithms.

4) The performance of the proposed algorithm is compared
with the existing filtering methods. The experimen-
tal results indicate the proposed algorithm can highly
improve the estimation accuracy.

The remainder of this article is organized as follows. Section II
introduces the system framework and the detailed information
about the Wi-Fi and BT sensing device. Section III presents
the proposed three-step data-driven algorithm. Section IV
describes the experimental design and the numerical results
are presented in Section V. This article is summarized by
concluding the research findings and future research topics.

II. SYSTEM DESIGN

In this section, the proposed system and the customized
Wi-Fi and BT sensing device are introduced in detail.

A. System Architecture

The system architecture is presented in Fig. 1. The dis-
coverable Wi-Fi and BT mobile devices within the detection
range of sensing devices can be detected, including mobile
phones, laptops, BT earphones, etc. The real-time data will be
transmitted from sensing devices to the remote data manage-
ment and analysis server through cellular networks or Ethernet
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Wi-Fi and BT sensing device.

cable connections. Besides, transit smart card data and in-
vehicle surveillance camera data can be transmitted to the
remote server for providing the ground-truth information to the
system. Then, transit ridership flow and O-D information can
be estimated through the proposed algorithm framework which
will be introduced in Section III. By deploying the proposed
system, the real-time information of transit operation can be
delivered to the public in time, so that the public can optimize
their travel plan based on real-time information. Furthermore,
the real-time transit ridership flow also can be used to optimize
vehicle dispatching and trip schedule. Generally, Wi-Fi and
BT sensing devices can be installed in transit vehicles for
monitoring passenger ridership flow or at transit stations for
monitoring passenger waiting time and estimating the num-
ber of waiting passengers at stations. In this study, we only
installed the Wi-Fi and BT sensing device in vehicles for moni-
toring passenger ridership flow. The detailed description of the
customized Wi-Fi and BT sensing device will be introduced
in Section II-B.

B. Customized Wi-Fi and Bluetooth Sensing Device

The Wi-Fi and BT sensing device are one of the most signif-
icant components of the proposed system in terms of hardware.
Some existing products can sniff Wi-Fi and BT signals for
traffic analysis at intersections, e.g., Acyclica RoadTrend [30].
However, it is quite different in the hardware part when the
sensing device is installed on a moving vehicle, for instance,
GPS recording, data communication, and power supply. Thus,
a customized Wi-Fi and BT sensing device is designed which
is presented in Fig. 2. The detailed information of each compo-
nent is described as follows, which can guide the researchers
and practitioners to build their implementation.

The Wi-Fi and BT sensing device are composed of four
components, including sensing modules, data processing unit,
communication module, and power supply.

Sensing Modules: There are four sensing modules are neces-
sary, Wi-Fi module, BT module, GPS module, and real-time
clock. In this study, all sensing modules are integrated into
a customized PCB board which connects with the data pro-
cessing unit through GPIO pins.

1) Wi-Fi Module: To capture the MAC address of Wi-Fi
management frames, the Wi-Fi 802.11b/g/n module
needs to set in the monitor mode [31]. In this study,
Ralink 5370 Wi-Fi chipset is used. Its detection range is
about 60 m and its frequency range is 2.4-2.4835 GHz.

2) BT Module: For sensing the MAC address in BT
slave response messages, the BT module needs to keep
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sending out inquiry requests. BT 4.0 BCM20702 chipset
is used in this study. The detection range is about 20 m.
3) GPS Module: To record moving features of the sensing
device, a GPS module is employed to record the high-
resolution latitude and longitude. U-blox 7020 chipset
with —162 dBm tracking sensitivity is employed. The
GPS module stores one data point per half-second. Each
data point includes latitude, longitude, and timestamp.

4) Real-Time Clock: The data collection programs are par-

allelly running on the data processing unit through
automatic start-up scripts. The MAC address data and
GPS location matching are based on the timestamp.
Most of the single-board computers have an embedded
clock for time recording. However, once the power is off,
the clock will stop running. If no Internet connection or
manual time synchronization is employed, the clock will
not be synchronized when the computer restarts. Even
the GPS module can help with time synchronization, it
still can ruin the data quality due to the signal related
issues. Thus, the DS 3231 RTC real-time clock module
was employed in this study to avoid the problems caused
by time synchronization.

Data Processing Unit: Raspberry Pi Zero is employed as the
data processing unit in this, which is a single-board computer
with a 1.0-GHz single-core CPU and 512-MB RAM [32].
Other Internet-of-Things (IoT) device can be used for this kind
of implementation, e.g., NVIDIA Jetson NANO, Asus Tinker
Board, and Arduino Uno R3.

Communication Modules: 4G LTE Huawei USB Modem
E397u-53 is employed as the hardware part of the data com-
munication module. The T-Mobile data SIM card is plugged
into the 4G modem, and the modem connects with the cus-
tomized USB board via the USB interface. The connection
of the device to the cellular network is activated via the
Network Manager API in the software which allows automatic
network connection upon start-up and automatic reconnec-
tion to the Internet whenever the connection fails. On-vehicle
Ethernet or Wi-Fi service can be used as alternatives to the
data communication module.

Power Supply: Portable Charger Anker PowerCore
20100-mAh power bank is used in this study. As the low
energy consumption of the Raspberry Pi Zero, the employed
power bank can support it for a one-day operation. Instead of
power banks, the in-vehicle power supply also can be used
with a voltage transformer.

III. PROPOSED METHODOLOGY
A. Algorithm Framework

The proposed algorithm framework is designed for mining
real-time transit ridership flow using Wi-Fi and BT sens-
ing data (see Fig. 3). Generally, the proposed algorithm is
a three-step data-driven approach. Step one aims to extract
the features and the vehicle moving features during the detec-
tion time of each MAC address. Then, MAC address data with
their extracted features are used as the input of step two in
which the FCM clustering algorithm is employed to cluster the
MAC addresses into the passenger and nonpassenger clusters.
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In step 3, the ridership flow population is estimated by the
proposed RF regression model using the clustered passen-
ger MAC addresses. The manual counted ground-truth data is
used for training the proposed RF regression model in this
study. Other data sources also can be alternatives for train-
ing algorithms, e.g., in-vehicle surveillance cameras and smart
card data. In this study, the proposed algorithm framework
estimates the population numbers of onboard, boarding, and
alighting passengers of each stop. In addition, by accurately
clustering the MAC addresses of passengers, the OD matrix of
partial passengers also can be achieved. The following sections
introduce the details of each step.

B. Feature Extraction

Since the detection range is not exactly the inside space
of transit vehicle, the MAC addresses come from the mobile
devices outside the vehicle can be detected as well. In the
following situations, the MAC address of nonpassenger mobile
devices can be detected by the onboard sensing device.

1) Fixed Wi-Fi or BT devices within the sensing range.

2) Mobile devices of the passengers standing at stations.

3) Mobile devices of the pedestrians or bicyclists within

the sensing range.

4) Mobile devices in other vehicles within the sens-

ing range.

For the fixed devices and the devices carried by the pas-
sengers standing at stations, the MAC address features are
quite different with the passenger MAC address. Intuitively,
the MAC address should be detected by only a few times and
in a short time period. For the mobile devices in other vehicle
or of pedestrian and bicyclists, even they travel parallelly with

transit vehicle, the MAC address features also would be dif-
ferent from passenger MAC addresses, e.g., the location of the
first and the last detection could be far away from the nearest
stations.

To depict the features of each MAC address, nine features
were extracted from the MAC address and GPS data which
are presented in Table I. The features were categorized into
two parts, MAC address features and vehicle moving features,
respectively. MAC address features contain detection times,
detection duration, average RSSI, and maximum RSSI. Travel
distance, average speed, maximum speed, and the distances
of to the nearest station when the MAC address is first and
last detected are the five features that describe the vehicle
moving features during the detection time of each unique MAC
address. In this study, matching MAC address data and GPS
data is finished on the edge side. Then, the MAC address point
with GPS location is transmitted from the sensing device to the
remote server for feature extractions. In this step, the output
is the vectors of each MAC address and its features.

C. Separating Passenger and Nonpassenger MAC Addresses
Using Fuzzy C-Means Clustering

Other than hard or crisp clustering algorithms, the fuzzy
clustering algorithm assigns a certain degree of membership to
a data point for all clusters, which indicates the data point can
belong to any cluster [33]. Thus, fuzzy clustering algorithms
usually are useful when the boundaries among clusters are
ambiguous [34], which satisfies the characteristics of the over-
lapped feature spaces of passengers and nonpassengers. FCM
clustering is one of the most popular fuzzy clustering algo-
rithms. Previously, scholars implemented original and modi-
fied FCM clustering algorithms in multiple applications, e.g.,
image segmentation [35], sensor network optimization [36],
stock performance prediction [37], and medical analysis [38].
It attempts to minimize the cost function J in (1) which is the
summation of the membership function of each data point.
The membership function only depends on the distance to
the center of each cluster. Then, assign each data point to
the closest cluster in terms of the membership function. Let
x = (X1, X2, X3, ..., Xy) denotes a set of N MAC address to
be partitioned into C clusters. X; = (x1, x2, X3, .. ., X,) denotes
n features of each MAC address. Then, the cost function J
would be calculated as the following equation:

N C
7= ux =il M

j=1 i=1

where m is the parameter for controlling the fuzzification,
u;j € [0, 1] is the membership function of the jth data point in
cluster i, which represents the possibility that the jth MAC
address data point whether belongs to a passenger or not,
thus, Zlczl uj =1(=1,2,...,N). v; is the center of the ith
cluster, and || is the similarity function of data point X;
and the cluster center v;. For the similarity function selection,
the Euclidean distance is employed as the similarity function
in this study since it can reflect the attributes of the most
extracted features. All extracted features are normalized for
the similarity calculation. The cost function J is minimized

Authorized licensed use limited to: University of Washington Libraries. Downloaded on January 15,2022 at 04:56:15 UTC from IEEE Xplore. Restrictions apply.



478

EXTRACTED FEATURES

IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 1, JANUARY 1, 2021

TABLE I
FOR CHARACTERIZING EACH UNIQUE MAC ADDRESS

Categories Features Definition
MAC Detection Times The number of times a unique MAC address is detected (Times)

Address Detection Duration The total amount of time for a unique mac to be detected (Seconds)

Features Average RSSI The average value of received signal strength indicator of each MAC (dBm)
Maximum RSSI The maximum value of received signal strength indicator of each MAC (dBm)
Least Distance Start The distance to the nearest station when MAC address is first detected (Meters)
Least Distance End The distance to the nearest station when MAC address is last detected (Meters)

Vehicle Travel Distance The tot?l travel distance of the vehicle between the first and the last detection

Moving of a unique MAC address (Meters)

Features The average speed of the vehicle between the first and the last detection of a

Average Speed

Maximum Speed

unique MAC address (Meters/Second)
The largest speed of the vehicle between the first and the last detection of a
unique MAC address (Meters/Second)

Algorithm 1 Training Process of FCM
Initialization:

The number of clusters C

The maximum number of iterations L

The fuzzification parameter m

Randomly Select the values of each cluster center v

0
1
Estimate U0 = [ug] using (2), U0 is a C x N matrix
Repeat:
Update " using (3) based on U'~!

i
Compute U’ using (2) based on vl@

Until: H Ut — yt-! H <gort>L

when the data points closer to the center of their clusters are
assigned with higher membership values than the assigned val-
ues of the data points far from the centroid. The solution of the
minimized cost function J can be achieved by the following
equations:

1
3¢ ( [1X;—vill
=T 1= v
N
Zj:l “ZIXJ

5 .
2;21 “;}1

2

Ujj =

)2/(m—1)

Vi = 3)

Initially, the centers of each cluster are randomly selected.
Then, the membership function and the centers are updated
until the cost function is converged. The training pro-
cess of FCM clustering is presented in Algorithm 1. For
the parameter settings, previous studies demonstrated that
user-defined parameters highly influence the performance of
algorithms, and several existing methods were designed to
determine the hyperparameter settings for achieving optimal
performance [39]-[41]. In this study, the parameters are set
based on the results of previous studies. The fuzzification
parameter m is set as 2 [42], the number of clusters C is set to
2 representing the clusters of passengers and nonpassengers. &
and L in the algorithm are set as 0.001 and 1000, respectively.

D. Estimating the Population Number of Onboard, Boarding,
and Alighting Passengers of Each Stop Using Random Forest
Regression

Considering that only partial passengers have discoverable
mobile devices, the ridership flow population needs to be

estimated based on the clustered passenger MAC address data.
In this study, the RF regression model was employed for the
estimation task. RF regression is a widely used nonparamet-
ric machine learning regression algorithm. As shown in the
previous study, RF regression can capture the nonlinear rela-
tionship in the data set which results in a better goodness of
fit than linear regression [43]-[45]. The general concept of RF
is introduced by Breiman in 2001 [29]. In this study, the clas-
sification and regression trees (CART) algorithm [46] is used
for trees development. Once a CART tree has been built, the
branches which do not contribute to the predictive performance
of the tree will be pruned for avoiding overfitting. However, if
the CART trees are used in the RF, the pruning process will
be ignored since the generalization error of a RF will always
converge.

For the RF regression model developed in this study,
five variables were selected as the regressors, including the
day of week, the hour of the day, the minute of the hour, the
dummy variable of whether the current stop is the last stop of
the trip, and the number of passenger MAC addresses.

E. Algorithms Evaluation

1) Evaluation of the Results of Fuzzy C-Means Clustering:
To evaluate the FCM clustering algorithm, Gaussian mixture
model (GMM) and a Bayesian approach to GMM (BGM)
were selected as the baseline models, since GMM and BGM
are mixture density-based clustering algorithms which are also
suitable for the data set with ambiguous boundaries. GMM is
good at forming smooth approximation to arbitrarily shaped of
the probability density and at scaling with the dimensionally
of data [47]. BGM optimizes the selection of the number of
components in the model as well as the partition data sets by
automatically penalizing the overcomplex model [48], which
could further improve the performance of the GMM model.
In addition, BGM can avoid overfitting by eliminating param-
eters using integration [49]. The model specification can be
found in [47] and [50]. Then, four metrics are employed for
evaluating clustering performance. The following paragraphs
introduce the metrics in detail.

External and internal clustering validation are two main
categories of clustering validation methods [51]. The major
difference is whether external information would be used for
validation. For unsupervised clustering algorithms, internal
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clustering validation is the only option due to the lack of
available labeling information [52]. Compactness and sepa-
ration are two main criteria for evaluating cluster similarity.
Compactness measures the intradistance of each cluster and
separation measures interdistance [53], [54]. The following
metrics are employed to measure compactness and sepa-
ration, including Silhouette coefficient (SC), Dunn’s index,
Davies—-Bouldin (DB) index, and Beta CV measurement.

SC [55] evaluates the performance of clustering result based
on the pairwise difference of inter and intra distances of
clusters, which is simply expressed as

__bG) —ag)
max{a()), b()}

where a(j) is the average distance between the ith sample and
all samples which are included in a given cluster C;, and b(j)
is the minimum average distance between the ith sample and
all samples of a given cluster Cx(k # j). The value of SC
ranges in [—1, 1]. A large SC value infers better clustering
results.

Dunn’s (DU) index is dedicated for identifying sets of com-
pact and well separated clusters by maximizing intercluster
distances whilst minimizing intracluster distances [56]. Dunn’s
validation index is calculated as

min { 5(C:. G) } 5)

1<i<C | max|<g<c{AXp)}
J#L -

“4)

DU = min

1<i<c

where 8(C;, C;) measures the intercluster distance between C;
and Cj, A(Xy) defines the intracluster distance of X, and C is
the number of clusters. A larger value of Dunn’s index implies
better clustering results.

DB index [57] is the ratio of the sum of intracluster distance
to intercluster separation, which is expressed by

k
DB = l max M (6)
k Py i#j D(V,‘, Vj)
where D(v;, v;) is the intercluster distance between the centers
of clusters C; and C; and D(C;) is the intracluster diameter of
the cluster C;. The lower the DB value, the better the clustering
results.

Beta CV measure (Beta CV) [?] is a measurement of
clustering validation based on the ratio of the mean intraclus-
ter distance to the mean intercluster distance which can be
calculated as [58]

Distanceintra/Nintra

Beta CV = — Q)
Distanceinter/Ninter

where Nipi, 1S the number of distinct intracluster edges, Ninger
is the number of distinct intercluster edges.

2) Evaluation of the Results of Random Forest Regression:
To evaluate the performance of the RF regression model, tra-
ditional linear regression model is developed based on the
same variables for the comparison purpose. Mean absolute
error (MAE), mean square error (MSE), and mean absolute
percentage error (MAPE) are used as the evaluation metrics.

The following equations present the metrics formulation:

Zf'vzl Al -
MAE = m (8)
N 2
Zi:l (Y, - Yi)
MSE = N 9
| M-y
MAPE = > 5 100% (10)

i=1

where f/,- is the estimated number of onboard, boarding, or
alighting passenger of stop i, ¥; is the ground-truth value, and
N is the number of stops in the testing data set. Typically, the
MAE presents a measure of the average misprediction of the
model, the MSE is used to measure the error associated with
a prediction, and the MAPE usually expresses accuracy as
a percentage. The model with a smaller value of MAE, MSE,
and MAPE performs better in the prediction of observed data.

3) Comparison With the Existing Filtering Methods:
For the relevant existing studies, the filtering method was
employed for processing the Wi-Fi and BT sensing data to
estimate the public transit ridership flow [17]-[19], [59]-[63].
RSSI, the number of received packets of each MAC, detec-
tion duration of each MAC, distance of the first and the last
detection to the nearest bus station, and vehicle speed while
a MAC been detected were the main parameters for filtering
the MAC address data. In order to compare the performance of
the proposed algorithms, two filtering methods were selected
as the representatives for the comparison purpose. The selected
filtering methods were considered more comprehensive than
others in terms of the number of filters and how the thresholds
of each filter were determined. The number of onboard pas-
sengers at each stop was estimated by the proposed algorithm
framework and two existing filtering methods. The detailed
description of the selected filtering methods is presented as
follows.

Filtering Method 1: Dunlap et al. [17] developed a three-
step filtering method for separating passengers and nonpas-
sengers. The MAC address which fits any following condi-
tions would be considered as a nonpassenger MAC address:
1) detection times is lower than 3 for Wi-Fi MAC address and
1 for BT MAC address; 2) detection duration is less than 60 s;
and 3) the distances of vehicle to the nearest station when the
MAC address is first and last detected are larger than 600 ft
(183 m) for Wi-Fi and 300 ft (91 m) for BT. The first and the
last stops of the trip are determined by the stations which are
the nearest stops to the vehicle when the MAC address is first
and last detected.

Filtering Method 2: Mishalani et al. [18] defined a filter-
ing method with four filters. If the features of a unique MAC
address meet the following rules which is considered as a non-
passenger MAC address: 1) detection duration is less than
3 min; 2) maximum signal strength is lower than 20th of the
cumulative distribution of observed signal strengths; 3) total
travel distance is less than 900 ft (274 m); and 4) total number
of detected signals per mile is less than 10. The first and last
detected time of each MAC, the distance between the sensor
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TABLE II
STATISTICAL SUMMARY OF THE DATA SET

Routes Trip Date Trip Start TriP End The Number  Number of Data Points ~ Number of Unique MAC
No. Time Time of Stops Wi-Fi Bluetooth Wi-Fi Bluetooth
3/6/2018 7:35:00 8:32:00 21 2550 344 431 29
372 3/6/2018 10:51:00 11:49:00 24 2055 344 854 53
3/1/2018 11:03:00 11:51:00 28 3547 346 819 21
11/4/2018 16:55:37 17:21:57 12 904 172 294 8
32 11/9/2018 18:40:49 19:26:26 24 2166 152 815 29
11/9/2018 19:38:58 20:05:48 15 918 86 165 13
11/4/2018 15:05:15 15:47:26 27 1879 122 747 20
67 11/8/2018 15:05:19 15:33:50 21 1351 88 555 18
11/8/2018 15:38:10 16:04:44 19 657 125 179 14
TABLE III

\
‘/m/"“
i

Bus Routes for Data Collection
B 32 - The data was collected
67 - The data was collected

o [l 372 - The data was collected

- =Seattle

Fig. 4. Study area.

and stops nearby and a predefined threshold of the maximum
sensor detection range of 200 ft (61 m) are used to determine
the boarding and alighting stops for each MAC address.

IV. EXPERIMENTAL DESIGN

The data used in this study were collected from nine trips
of three routes in Seattle. The detailed description of the study
area and statistical summary of the data set are introduced in
the following sections.

A. Study Area and Data Collection

The study area is three transit routes in the north of King
County, including route 32, route 67, and route 372. Fig. 4
shows the three routes on the map and the GPS data points as
well. Route 67 depicted in blue runs from University District
to Northgate Transit Center, route 32 highlighted in red oper-
ates from Queen Avenue to Sand Point Way, and route 372,
marked in green, provides service along the route from Bothell
to University District. The data were collected from three trips
of each route by the customized Wi-Fi and BT sensing device.
For each trip, the sensing device was carried by a volunteer
seating in the middle of the vehicle. The sensing device was
powered on when the volunteer got seated and powered off
once the vehicle arrived at the last stop or the volunteer took
off the vehicle.

B. Statistical Summary of the Data Set

Table II shows the statistical summary of the data set. There
are nine trips were traveled for collecting data. The number

EVALUATION OF CLUSTERING ALGORITHMS FOR SEPARATING
PASSENGER AND NONPASSENGER MAC ADDRESS

Metrics Fuzzy C- Bayesiap Gaussian Ga}lssian
means Mixture Mixture

SC 0.74289 0.65651 0.63654
DU 0.00021 0.00007 0.00005
DB 0.67708 0.79231 0.81318
Beta CV 0.16561 0.2199%4 0.23426

of stops is different from trip to trip. Since the vehicles only
stop at the stations with waiting passengers or have onboard
passengers requesting for taking off. Only the stations where
the vehicle stopped were counted as stops in the data set.
Besides the trip information, the amount of the MAC address
collected from each trip also are introduced. Based on the sta-
tistical summary, 17 806 data points were collected, including
16027 Wi-Fi data points and 1779 BT data points. The huge
difference between the amount of Wi-Fi and BT data is caused
by the amount of discoverable Wi-Fi and BT devices and
data frame transmission frequency of Wi-Fi and BT protocols.
Totally, 5064 unique MAC addresses were detected, including
4859 via Wi-Fi network and 205 via BT network. Based on
the data set, averagely, one unique Wi-Fi MAC address is col-
lected out of four Wi-Fi data points and one unique BT MAC
address is collected out of ten BT data points.

V. NUMERICAL RESULTS

A. Separating Passenger and Nonpassenger MAC Addresses
Using Fuzzy C-Means Clustering

The raw Wi-Fi and BT MAC address data along with
the GPS data were used to extract the proposed features of
each MAC address. The FCM clustering was conducted to
cluster each MAC address into passenger or nonpassenger
clusters. The metrics of each model are presented in Table III.
According to the evaluation metrics, the FCM clustering model
outperformed all models in terms of achieving the highest
value of SC and DU and the lowest value of Beta CV and DB,
which indicates the clusters were separated well by the FCM
clustering. The BGM and GM models had similar performance
according to the closing value of all four metrics.
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TABLE IV
STATISTICAL SUMMARY OF PASSENGER AND NONPASSENGER CLUSTERS

Passenger Non-Passenger
Features
Min Max Mean S.D. Min Max Mean S.D.

Detection Times 2.00 1021.00 20.89 69.24 1.00 31.00 1.26 1.71
Detection Duration (Seconds) 1.00 3060.00 418.78 679.08 0.00 1253.00 424 62.89
Average RSSI (dBm) -88.00  -22.19 -56.65 14.17 91.00 -39.00 -61.79  12.10
Max RSSI (dBm) -85.00  -17.00 -50.62 15.01 91.00 -37.00 -6123 1230
Least Distance Start (Meters) 1.64 2306.17 152.19 213.12 3.22 1064.48 32449 213.49
Least Distance End (Meters) 2.18 1722.00 144.31 195.75 322 1064.48 325.57 213.74
Trip Distance (Meters) 8.94 20442.36  2409.68  4181.46 0.00 184.03 1.77 14.61
Average Speed (Meters/Second) 0.44 30.29 7.72 6.43 0.00 8.25 0.11 0.77
Max Speed (Meters/Second) 0.44 79.70 8.34 10.71 0.00 31.98 0.27 2.18

TABLE V

EVALUATION OF THE ESTIMATED NUMBER OF ONBOARD PASSENGERS

Fuzzy C-means

Bayesian Gaussian Mixture

Gaussian Mixture

Methods MSE MAE MAPE MSE MAE MAPE MSE MAE  MAPE
Linear Regression 2029 3.26 2896  23.54 346  33.86 2779 343 3449
Random Forest  14.61 208 1127 2261 325 3102 1036 250  32.09

Totally, 5064 unique MAC address were clustered by the
FCM clustering algorithm into two clusters with 399 passen-
ger MAC addresses and 4665 nonpassenger MAC addresses.
Based on the FCM clustering results, the statistical sum-
mary of each feature is presented in Table IV. The mean
values of the detection times and the detection duration of
passenger MAC address are much larger than those of non-
passenger MAC address. The nonpassenger MAC addresses
have 1.26 average detection times and 4.24-s detection dura-
tion which is consistent with the assumption that nonpassenger
MAC address should be detected for few times and in a short
time window. The average RSSI and the max RSSI of pas-
senger MAC address is larger than those of nonpassenger for
all four numbers, which is reasonable that the signal strength
of nonpassenger’s mobile device might be influenced by the
bodyshell of the transit vehicle or the larger distance from the
sensing device. The Least Distance Start and Least Distance
End of passenger MAC addresses are about 200 m which is
smaller than those of nonpassenger MAC addresses. It is expli-
cable that the passenger MAC addresses are more likely to be
detected around the station for the first and the last detec-
tion, and nonpassenger MAC addresses are more likely to be
detected during the trip where the vehicle is far away from
stations. However, since the nonpassengers waiting for other
vehicles at the station are possible to be detected, several MAC
addresses are close to the stations for the first and the last
detections are still considered as nonpassenger. Other three
vehicle moving features of passenger MAC address, includ-
ing trip distance, average speed, and maximum speed, have
higher mean values than those of nonpassengers for all four
numbers. The mean values of these three features of nonpas-
sengers’ MAC addresses are close to zero, which indicates the
vehicle almost halted during the time period when the MAC
addresses of nonpassengers were detected. It is noted that
the maximum values of average speed and the max speed of

passenger are unreasonably high, which is caused by unstable
GPS data.

B. Estimating the Population Number of Onboard, Boarding,
and Alighting Passenger of Each Stop

After separating the passengers MAC address from the data
set, the boarding and alighting stations of each passenger MAC
address were assigned as the stations with the smallest distance
to the vehicle for the first and the last detection. The total num-
ber of onboard, boarding, and alighting passengers of each stop
were estimated based on the FCM clustering results. Then, the
data were divided into training data and testing data with a por-
tion of 7:3 for developing the proposed RF regression model
as well as the linear regression model. The manual counting
number of onboard, boarding, and alighting passengers of each
stop was used as the ground truth for calculating MAE, MSE,
and MAPE. In order to demonstrate the clustering results of
the FCM, the total number of onboard, boarding, and alighting
passenger of each stop was also counted based on the BGM
and GM clustering results.

First, only the number of onboard passengers was estimated.
The evaluation results are presented in Table V. According to
the evaluation results, the estimated results based on the FCM
clustering performed better than all other baseline models in
terms of the smallest values of MSE, MAE, and MAPE for
both the estimations of the linear regression and the RF regres-
sion except the MSE of the Gaussian mixture algorithm in RF
regression case. The potential reason is that the passenger flow
estimation based on the Gaussian mixture algorithm with RF
regression might achieve more accurate results for the stations
with a large number of passengers. However, since the overall
estimated performance is not as accurate as FCM in the case
of RF regression, the overall estimated error of the Gaussian
mixture algorithm in the RF regression case is still higher than
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Comparison of The Estimated and Ground Truth Number of Onboard Passengers of Each Stop

"
=]

—— The Ground Truth Number of Onboard Passengers of Each Stop

—— The Number of MAC Addresses of Onboard Passengers Based on the FCM Results
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Comparison of the number of clustered onboard passenger MAC addresses based on FCM clustering, estimation results of the population number of

onboard passengers by linear regression and RF regression, and ground-truth data.

TABLE VI
COMPARISON OF THE PROPOSED ALGORITHM AND THE EXISTING FILTERING ALGORITHMS

Fuzzy C-means

Filtering Method 1 [17]

Filtering Method 2 [18]

Methods MSE MAE MAPE MSE  MAE MAPE MSE  MAE  MAPE
Linear Regression 2629 326 2896 5205 532 5125 6778 662  58.62
Random Forest  14.61 208 1127 3516  3.84 3647 3003  3.76 275

the FCM in RF regression case. Furthermore, the estimated
performance of the proposed RF regression algorithm is more
accurate than that of the linear regression model for the esti-
mation based on all three clustering algorithms. MSE, MAE,
and MAPE of the RF regression model are highly smaller than
those of the linear regression model. The estimated number of
onboard passengers of each stop based on the FCM clustering
results and the ground truth is visualized in Fig. 5.

The black solid line is the number of clustered passenger
MAC addresses of each stop based on the FCM clustering.
The red solid line is the ground-truth number of onboard
passengers of each stop. For most of the stops, the num-
ber of passenger MAC addresses is a small proportion of
the ground truth, and it can effectively reveal the trend of
the ground truth. The blue dashed line presents the estimated
number of onboard passengers based on the estimation of lin-
ear regression. By employing linear regression, the number of
passenger MAC addresses were enlarged with a fixed propor-
tion. The green dashed line shows the estimation results by
RF regression, which is highly close to the ground truth and
even superposed the red line for some stops. By capturing
the nonlinear relationship between the number of passenger
MAC addresses and the ground truth, the RF regression model
achieved more accurate estimation of the population number
of onboard passengers.

C. Comparison With the Existing Filtering Methods

The estimation results of RF regression and linear regres-
sion using the filtering results as the inputs are compared with
the estimations based on FCM clustering results in this sec-
tion. Table VI shows the evaluation results. Consistent with
the previous evaluation results, the RF regression model per-
formed better than the linear regression for all metrics. Among

the existing filtering methods, Filtering Method 2 achieved
a better performance than Filtering Method 1 in the case of
RF regression, and the results in the case of linear regression
is opposite. The estimation performance based on the FCM
results improved a lot compared with the two existing filter-
ing algorithms. It is demonstrated that the MAC addresses
of passenger and nonpassenger are hard to be well separated
by filters. By considering the overlapped feature spaces of
passenger and nonpassenger, the FCM clustering algorithm
effectively separated the MAC addresses of passenger and non-
passenger. Furthermore, the RF regression model effectively
estimated the population number of onboard passengers by
capturing the nonlinearity.

The scatter plots of the ground truth versus the estimated
number of onboard passengers based on RF regression using
FCM results and two filtering algorithms are presented in
Fig. 6. According to the figure, the dots in the plots of fil-
tering algorithms are dispersed around the diagonal line. For
Filtering Method 1, most of the dots are above the diagonal
line, which indicates the MAC addresses were more likely to
be separated into the nonpassenger cluster so that the number
of onboard was underestimated. The potential reason is that
the Filtering Method 1 is inclined to separate passenger into
the nonpassenger cluster, e.g., the GPS location was recorded
every 20 s so that the distance of the vehicle to the nearest
station is possible to be larger than the detection range for the
first detection of a passenger MAC address. For the results
of Filtering Method 2, most of the dots are beneath the line,
which indicates the algorithm overestimated the number of
onboard passengers. The explanation could be the filter for
filtering signal strength was apt to separate the nonpassenger
MAC addresses to the passenger cluster since the distribution
of signal strength of nonpassenger MAC address is similar
to the distribution of passenger MAC address. The rightmost
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results.

TABLE VII
EVALUATION OF THE ESTIMATED NUMBER OF BOARDING AND
ALIGHTING PASSENGER OF EACH STOP

Estimations MSE MAE MAPE
Estimating the Number of Boarding
Passengers of Each Stop 0.86 0.50 14.72
Estimating the Number of Alighting
Passengers of Each Stop 0.96 0.54 17.41

scatter plot presents the estimation using the FCM results. The
dots are more concentrated around the diagonal line than oth-
ers. It is noted that the estimation is more accurate for the
small number of passengers. As the number increased, the
error became more considerable. The potential reason could
be the insufficient data point with the large value in the training
data set.

Besides the number of onboard passengers, the numbers of
boarding and alighting passengers of each stop were also esti-
mated based on the RF regression model using FCM clustering
results. The estimation performance was evaluated by the three
metrics calculated based on the manual counting numbers
of boarding and alighting passengers of each stop, which is
presented in Table VII. According to the evaluation results,
the estimated numbers of boarding and alighting passengers
are acceptable in terms of the small value of MSE, MAE,
and MAPE. It is noted that the MAPE of estimated numbers
of both boarding and alighting passengers are higher than the
MAPE of the estimated number of onboard passengers, which
is potentially caused by numerous zero values of the number
of boarding and alighting passengers in the data set.

D. Estimating the Ridership Flow and O-D Information of
the Selected Transit Trip

Based on the proposed algorithm framework, the tran-
sit demand can be monitored by the estimated numbers
of onboard, boarding, and alighting passengers and O-D
information from Wi-Fi and BT sensing data. In order to
further demonstrate the feasibility of the proposed method,
the ridership flow and O-D matrix of a selected trip were
estimated based on the proposed algorithms. The results are
presented in Tables VIII and IX. The selected trip was traveled
on November 9, 2018 from 19:38:58 to 20:05:48. Totally, the
transit vehicle stopped at 15 stations during the trip.

Scatter plot of ground truth versus the estimated number of onboard passengers based on RF regression using FCM clustering and filtering algorithms’

Table VIII presents the O-D matrix of the passenger MAC
addresses by the FCM clustering algorithm. Even only partial
O-D information can be achieved, the main trend of the travel
demand can be achieved. Besides the O-D matrix, the numbers
of boarding and alighting passengers were estimated using the
RF regression model. The RF regression was trained by the
data set which is collected from other trips. The ground-truth
numbers of boarding and alighting passengers of each stop
are also presented in the table. Table IX shows the estimated
number of onboard passengers of each stop and the ground
truth as well. The estimated errors are negligible for the most
stops. However, the estimation errors were relatively large for
the last two stops. Since the sensing device was powered off
before the trip ended for the selected trip so that the MAC
address data quality was influenced for the last two stops.
Therefore, the zero number of MAC addresses for the last
stops is the main reason for the large error.

By successfully capturing the partial O—D matrix, the num-
bers of onboard, boarding, and alighting passengers of each
stop, the public transit demand can be achieved. Based on the
output parameters of the proposed system, it is easy to observe
which parts of the trip have more travel demands and which
stops are more popular for the traveler.

VI. CONCLUSION

In summary, this study proposed a real-time system for
monitoring public transit ridership flow based on the cus-
tomized Wi-Fi and BT sensing device. For the methodology,
a three-step data-driven approach is developed for mining the
transit ridership flow and O-D information from Wi-Fi and
BT sensing data, including feature extraction for characterizing
MAC address data, FCM clustering algorithm for separating
MAC address of passenger, and RF regression for estimating
the population number of ridership flow. To demonstrate the
effectiveness and efficiency of the proposed algorithm, GMM
and BGM were selected as the baseline models for evaluat-
ing FCM clustering, and linear regression was selected for
evaluating RF regression. The comparison of the proposed
algorithm with the existing filtering methods was conducted as
well. The MAC address data was collected by the customized
Wi-Fi and BT sensing device from nine trips of three transit
routes in Seattle. Multiple evaluation metrics were calculated
based on ground-truth data and the estimates to quantitatively
evaluate the estimation performance. According to the results,
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TABLE VIII
O-D MATRIX OF THE SELECTED TRIP
Boarding e L1 23 4| e |78 o o a2 s fa s | T e e | Boanding.
1 0 ofojojlofO]O] O 0 0 0 2 0 2 2 3
2 ofojo|lofO]O] O 0 0 0 0 1 1 2 0
3 1rjof1f{ofo]Jo] O 0 0 0 0 0 2 2
4 ofojojJofo]O] 1 0 0 0 0 0 1 0 1
5 of1f{ofo0]0] O 0 0 0 0 0 1 1 1
6 oj1{ofOof O 0 0 0 0 0 1 1 1
7 ofl3]l1]lololofofofo 4 > 3
8 O[O0 O 0 0 0 0 0 0 1 3
9 0] 0 0 0 2 0 0 2 0 2
10 0 1 1 0 0 0 2 2 1
11 0 1 0 0 0 1 0 0
12 0]10(O0 1 1 1 2
13 0 1 0 1 0 3
14 0|0 0 3 2
15 0 0 0 0
Total AlightingMAC |0 (O | O |1 |JO[2(|1[3]1 1 1 2 2 3 2 19 19
Total gir;‘fgggmth olofofol|t]|2ftfloflt|o]1]o|l2]2]c% 6 16
ToilhEg;tgsgted oottt 2fift]2]2]1]2|3]|2]s » 2
TABLE IX
NUMBER OF ONBOARD PASSENGERS OF THE SELECTED TRIP
Stops 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ground Truth Onboard Passenger 2 4 5 5 5 4 5 6 5 7 6 7 5 6 6
Onboard MAC of Each Stop 2 3 5 5 6 5 8 5 6 7 7 6 5 2 0
Estimated Onboard Passenger 2 4 5 5 5 6 6 4 4 5 5 5 4 3 1

the proposed algorithm outperformed baseline models and the
existing filtering methods.

The finding of this study can help to provide real-time accu-
rate transit ridership flow and O-D information for supporting
the transit network planning and improving quality of service.
In addition, transit passengers could get a better understand-
ing of the operational status of transit systems for optimizing
their travel plan. In this study, the O-D information of a sam-
ple of passengers is achieved. The population O-D inference
based on Wi-Fi and BT sensing data could be a future research
direction.
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