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A B S T R A C T

Forward collision warning (FCW) systems function by alerting drivers to upcoming hazards
ahead and have been shown to help drivers respond more quickly under emergency situations. As
FCW directly affects how vehicles interact longitudinally with one another, it may also influence
car-following behavior such as reaction time, which has been little researched. To investigate
these effects, driving data were collected from the Shanghai Naturalistic Driving Study. Five data-
collecting vehicles were equipped with Mobileye® systems, which included an FCW function with
headway display and warning system. Participants drove the vehicles for two months, with the
Mobileye® system activated the second month only. From the 161,055 km of naturalistic driving
data collected from 60 drivers, 3,000 car-following events were selected, and the effects of FCW
on car-following headway and reaction time, and on the parameter values of the Gazis-Herman-
Rothery (GHR) model were examined. Results showed that (1) drivers tended to maintain shorter
headway with FCW enabled, while the proportion of time in short headways did not increase; (2)
FCW reduced car-following reaction time when the lead vehicle was accelerating and when the
relative speed between the lead and following vehicle was large; and (3) a reduction in the space
headway exponent of the GHR was observed when FCW was enabled, indicating that drivers
follow more closely with FCW because the system increases drivers’ sensitivity to changes in
following gaps. Results of this study suggest that an FCW system with a headway monitoring
function may increase traffic efficiency and stability without degrading safety.

1. Introduction

A primary aim of forward collision warning (FCW) systems is to reduce rear-end crashes, which account for 20–30% of all crashes,
and about 10% of all fatal crashes (Wang et al., 2016a). These in-vehicle FCW systems monitor the roadway ahead and warn the
driver when a collision risk reaches a certain threshold. Previous research, which has focused mainly on the effects of FCW on driving
behavior in rear-end crash scenarios, has found that FCW can reduce accelerator release time (McGehee et al., 2002) and brake delay
time (Soma and Hiramatsu, 1998). However, as FCW directly affects how vehicles interact longitudinally with one another, it may
also influence behaviors more specific to car following, behaviors that can be precursors to rear-end collisions and also affect traffic
efficiency and stability.

Car following refers to a situation in which a vehicle’s speed and longitudinal position are influenced by the vehicle immediately
ahead of it, characterized by reaction time and headway (Ranney, 1999; Zhu et al., 2016):
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• Driver reaction time was discussed as early as the 1950s, when the first stimulus-response car-following model was developed
(Chandler et al., 1958). In stimulus-response car-following models, the FV observes a change in driving conditions—the stimu-
lus—and responds after a lapse of time, called the reaction time (Gurusinghe et al., 2002). Reaction time is an essential factor
contributing to traffic instability and, consequently, is an indispensable element in many car-following models (May, 1990).

• Headway is defined as the elapsed time between the arrival of the lead vehicle (LV) and the following vehicle (FV) at a designated
point (Ben-Yaacov et al., 2002). Headway, therefore, relates to the time available for a driver to react, and is a safety measure of
car-following behavior (Zhang et al., 1999).

Several studies have investigated the impact of FCW on headway maintenance and have found that FCW does significantly affect
headway (Ben-Yaacov et al., 2002) and the time drivers spend in short headways (Shinar and Schechtman, 2002). However, while
these studies focused on observable performance changes, they did not explain them: specifically, they did not investigate how FCW
influences the internal car-following mechanisms that cannot be observed directly. In particular, little research has been devoted to
investigating how FCW might affect car-following reaction time.

Therefore, this study seeks to quantify FCW’s impact on the internal mechanisms of reaction time and other parameter values of a
fundamental car-following model, and also FCW’s impact on the car-following performance measure of headway. Quantification of
the internal mechanisms may help explain the headway results.

To address these needs, real-world driving data were collected from the Shanghai Naturalistic Driving Study (SH-NDS). In the SH-
NDS, driver behavior was observed as it occurred in the full context of real-world driving, and vehicle kinematic data (e.g., accel-
eration, velocity, position) were recorded continuously at high resolution. Mobileye® systems were installed in the research vehicles,
which included an FCW function. Each participant drove the vehicle for two months, with the Mobileye® system activated for the
second month only. The data collection procedure started in December 2012, and by December 2015, driving data had been collected
for 60 participants who drove 161,055 km in total. These detailed driving data provide an unprecedented opportunity for in-
vestigating the impact of FCW on drivers’ car-following behavior.

2. Literature review

2.1. Forward collision warning (FCW) system

Rear-end collisions are a serious highway safety issue. One direct approach to reduce rear-end collisions is to develop an FCW
system. These systems use sensors like camera, radar, and lidar to detect slower-moving or stationary vehicles. Once the system
determines that a forward collision is going to happen (e.g., with short following distances or large approaching speeds), it will send
auditory and/or visionary alerts to the driver so that he or she can take evasive actions to prevent a potential crash.

The warning algorithm is the core of an FCW system. Extensive efforts have been devoted to developing better FCW algorithms,
and generally, these algorithms can be divided into two categories: perception-based and kinematic-based (Wang et al., 2016b).
Perception-based algorithms trigger warning based on empirical risk indicators such as time headway and time to collision. Once a
threshold value is reached, a warning will be signaled. Kinematic-based algorithms determine a minimum theoretical distance to stop
safely based on the fundamental laws of motion. Once the following distance is shorter than the safety distance, a warning will be
triggered.

2.2. Car-following models

A car-following model describes the movements of a following vehicle (FV) in response to the actions of a lead vehicle (LV). A
large number of car-following models have been developed, but most have been based on a stimulus-response framework. This
framework assumes that each driver responds to a given stimulus from the vehicle(s) ahead according to the following relationship:
response = sensitivity × stimulus. The Gazis-Herman-Rothery (GHR) model, also known as the General Motors (GM) model, is the
best-known stimulus-response model and is the result of research spanning from the late 1950s until the middle 1960s (Chandler
et al., 1958; Gazis et al., 1961). The GHR assumes that drivers determine their acceleration based on the relative speed and space
headway (or following gap); the space headway exponent indicates driver sensitivity to the gaps.

2.3. Impact of FCW on car-following

Several studies have investigated the impact of FCW on car-following behavior, focusing on headway maintenance. Table 1
presents a summary of these studies, which, based on experimental method, can be pooled into two main categories: test track studies
and naturalistic driving studies (NDS).

2.3.1. Test track studies
Dingus et al. (1997) conducted three on-road test track studies to see how the FCW’s headway monitoring and collision warning

systems influenced driver behavior. A total of 108 participants (54 men and 54 women) were recruited. All 108 participants par-
ticipated in a 40.3-km baseline drive without warning systems, and then a return drive with warning systems. The researchers found
that driver headway increased by 0.5 s when an appropriate visual display of headway was presented. Ben-Yaacov et al. (2002)
evaluated how an imperfect (with some malfunctions) collision warning system would affect driver headway maintenance. Thirty
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participants were recruited and were asked to drive four trials. The first trial involved 20 km of driving with the warning system
muted; the second trial was a 70-km drive (about 50 min) with the warning system unmuted; the third was another muted baseline
drive back to the starting point; the final trial took place 6 months later and was a 20-km drive with the same vehicle and route. It was
found that drivers maintained a longer following distance after a short exposure to the system. The major limitations of these two
studies are their short experimental durations and artificial driving situations.

2.3.2. Naturalistic driving studies
Data collected by NDS represent real-world driving over longer time spans, and may provide more valid results on FCW’s effects.

In an NDS conducted by Shinar and Schechtman (2002), 43 drivers drove their cars for 3 weeks without headway feedback and then
for approximately 3 more weeks with immediate headway feedback. The results showed that headway feedback reduced the time
spent in short headways (≤0.8 s) by approximately 25%, and increased the time spent in safer longer headways (> 1.2 s) by
approximately 20%. One limitation of this study is that it has biased subjects because all the drivers were from two Israeli high-
technology firms.

Ervin et al. (2005) conducted a 12-month NDS to evaluate an automotive collision avoidance system (ACAS), which included an
FCW system and an adaptive cruise control system (ACC). A total of 96 drivers participated in the experiment and drove 137,000
miles in total. The results echoed the above test track studies: they showed that with FCW enabled, headways increased on freeways
and during the daytime. One potential limitation of this study is that the experiment was conducted almost 20 years ago
(1999–2004).

Using NDS data from the Integrated Vehicle-Based Safety System (IVBSS) program, Bao et al. (2012) and LeBlanc et al. (2013)
investigated the effects of an integrated in-vehicle crash warning system on the headway maintenance of heavy trucks and light
vehicles, respectively. The results indicated that the warning system led to an increase in headway with heavy truck drivers, but a
decrease in headway with light vehicle drivers. In Europe’s first large-scale Field Operational Test (euroFOT) project, Kessler et al.
(2012) tested several in-vehicle systems in real traffic. They found that for both light vehicles and trucks, the headway increased
significantly with the use of ACC and FCW together.

There are several common limitations in the abovementioned studies:

(1) They focused on observable performance (time headway) changes but did not explain what internal car-following mechanisms
caused these changes.

(2) They did not investigate how FCW influences the components of car-following models, which are essential for bridging micro-
scopic driving behaviors and macroscopic traffic characteristics.

(3) No study has investigated how FCW might affect car-following reaction time, an essential factor contributing to traffic instability.

Therefore, this study will use naturalistic driving data to (1) investigate FCW’s impact on reaction time and car-following model
parameter values, and (2) further confirm FCW’s effects on headway in order to relate those effects to the system’s impact on car-
following mechanisms.

3. Data collection and preparation

3.1. Shanghai naturalistic driving study

The data used in this study were collected by the Shanghai Naturalistic Driving Study (SH-NDS) (Zhu et al., 2018a,b) jointly
conducted by Tongji University, General Motors (GM), and the Virginia Tech Transportation Institute (VTTI). The three-year data
collection procedure started in December 2012 and ended in December 2015. Five GM light vehicles equipped with Strategic
Highway Research Program 2 (SHRP2) NextGen data acquisition systems (DAS) were used to collect real-world driving data. The
Mobileye® C2-270 active safety system was installed in each test vehicle to evaluate the system’s effectiveness.

As shown in Fig. 1, each participant drove his/her assigned vehicle for two months, with the Mobileye® system activated only the
second month. Driving data were collected daily from the 60 licensed Shanghai drivers who, altogether, traveled 161,055 km during
the study period, with 83,144 km in the Mobileye® system-disabled phase and 77,911 km in the enabled phase.

The 60 participants were randomly sampled from the population of licensed Shanghai drivers; the distributions of gender, age,
and driving experience of the sample accord with those of the general Chinese driving population. The general principle for parti-
cipant inclusion was that they should be non-professional drivers who own vehicles, have driving experience, and have the need to
drive daily. The specific inclusion criteria are:

Fig. 1. Flow framework for experiment design.
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• having at least 2 years of driving experience;
• driving the vehicle for commuting almost every day;
• not being a professional or taxi driver;
• of an age between 25 and 60.

3.2. Data acquisition system

The DAS uses an interface box to collect vehicle controller area network (CAN) data, an accelerometer for longitudinal and lateral
acceleration, a radar system that measures relative distances and relative speeds to the LV and vehicles in adjacent lanes, a light
meter, a temperature/humidity sensor, and a GPS sensor. The data collection frequency for the accelerometer and radar systems is
50 Hz. The DAS automatically starts when the vehicle’s ignition is turned on, and automatically powers down when the ignition is
turned off. Table 2 summarizes the resolution and accuracy of the key data elements.

Four synchronized camera views are also included to validate the sensor-based findings (Fitch and Hanowski, 2012). As shown in
Fig. 2, the four-camera views monitor the driver’s face, the forward roadway, the roadway behind the vehicle, and the driver’s hand
maneuvers. The frame rate of the videos is 14.98 frames/second.

3.3. Mobileye® active safety system

The Mobileye® C2-270 active safety system includes two subsystems that relate to car following: forward collision warning (FCW)
and headway monitoring and warning (HMW). The FCW system alerts drivers to the danger of an impending rear-end collision, while
the HMW system helps them maintain a safe following distance from the vehicle ahead by providing visual and audial alerts if the
time headway is less than a pre-defined threshold.

Time-to-collision (TTC) and time headway are used by the FCW and HMW systems, respectively, to trigger alerts. TTC is the time
that is left until a collision occurs if both vehicles continue on the same course and at the same speed, and is computed as the
following gap divided by relative speed. According to Vogel (Vogel, 2003), headway and TTC are independent of each other for
vehicles in a car-following situation. A small headway generates a potentially dangerous situation, whereas TTC specifies the actual
occurrence of a dangerous situation.

In the FCW, once the TTC drops to 2.7 s, the system emits a series of loud, high-pitched beeps, and displays a red, flashing car icon

Table 2
Resolution and accuracy of key data elements.

Data element Resolution Error

Timestamp 1 ms –
Relative speed of radar detected objects 0.1 m/s < 1.65 m/s
Relative distance of radar detected objects 32 mm < 0.5 m when distance < 10 m;

< 5% when 10 m < distance < 240 m
Relative angle of radar detected objects 1 deg < 0.5 deg
Subject vehicle speed 0.02 km/h < 1 km/h

Fig. 2. Four camera views from SH-NDS (Zhu et al., 2018a).
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(Fig. 3-a). In the HMW system, the time headway is displayed numerically and is continuously updated (Fig. 3-b) when an LV with
headway < 2.5 s is detected. A green car icon is displayed if the headway remains > 0.6 s, but once the headway drops to 0.6 s, a red
car icon is displayed (Fig. 3-c) and a single chime is sounded to indicate dangerous tailgating (Mobileye, 2010).

3.4. Car-following periods extraction

As shown in Fig. 4, a car-following period was extracted if the following final criteria were met simultaneously (Chong et al.,
2013; LeBlanc et al., 2013; Zhu et al., 2018b; Wang et al., 2018; Zhu et al., 2019):

• Radar target’s identification number > 0 and remained constant: this criterion guaranteed that the same LV was being detected;
• Range < 120 m: this criterion eliminated free-flow traffic conditions;
• Lateral distance < 2.5 m: this criterion guaranteed that the following and lead vehicles were driving in the same lane; and
• Duration of car-following period > 15 s: this criterion guaranteed that the car-following persisted long enough to be analyzed.

To ensure the validity of the car-following periods selected for analysis, the results of the automatic extraction process were
confirmed by an analyst viewing the video material filtered by the above criteria. A total of 3,000 car-following events were randomly
selected and used in this study.

Fig. 3. Visual display of the FCW and HMW systems.

Fig. 4. Radar target’s position and motion with respect to the research vehicle.
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4. Methodology

4.1. Independent variables

Table 3 summarizes the independent variables. The key independent variable was FCW, which included on and off phases de-
pending on the activation of the Mobileye® FCW system. To consider the possible influence of traffic interruption, the roadways were
divided into two categories: freeways and surface roads. Freeways refer to roadways with limited access such as urban expressways;
arterial, minor arterial, collector, and local roadways were categorized as surface roads. Roadway type, ambient light, and weather
information were derived from the front view video by a single analyst to ensure consistency.

Traffic density was measured based on radar data. The radar system can track, at most, eight vehicles simultaneously. Using the
position information of radar-detected vehicles, the following distance between each pair of lead and following vehicles can be
calculated and averaged, as shown in Fig. 5. The reciprocal of average following distance was taken as traffic density. It should be
noted that although this is not a precise calculation of traffic density along a road segment, it well estimates the local traffic density
around the subject vehicle. Since vehicles’ behaviors are most directly affected by vehicles around them, this estimated local traffic
density can well capture how traffic density affects the subject vehicle’s behavior.

Road slope was not included as an independent variable because all the car-following events were extracted from trips in
Shanghai, for which the vast majority of land area is flat. We also assumed that other road characteristics such as radius, number of
lanes, and lane width were distributed consistently across the FCW’s on and off stages because the data from the two stages came from
the same group of people who used their vehicles for commuting, that is, they traveled on the same roads daily. Considering the
limited number of drivers, we did not include age, gender, and driving experience as independent variables.

Table 4 presents frequency information for the discrete variables and descriptive statistics for the continuous variables. The total
number of car-following events that occurred during the FCW’s on and off stages are 1,513 and 1,487, respectively. The road type,
ambient light, and weather type distributed unevenly across their levels (e.g., more events on freeways than surface roads), but the
distribution patterns were roughly consistent between FCW on and off stages.

4.2. Dependent variables

To examine the effect of the FCW on car-following, three types of objective measures were used: (1) SPS:refid::e1 time headway,
including mean headway and the proportion of time drivers spent in a short time headway zone (i.e., 1 s or less); (2) reaction time; (3)
parameters of the GHR car-following model. The basic descriptive statistics for time headway are presented in Table 4.

Table 3
Summary of independent variables.

Variables Conditions

FCW (Warning condition) ON, OFF
Roadway Freeway, surface road
Ambient light Daytime, nighttime
Weather Sunny, rainy
Traffic density Continuous variable
Speed Continuous variable

Fig. 5. Traffic density estimation using position information of radar-detected vehicles.
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4.2.1. Time headway
Mean time headway for each car-following event was calculated by dividing the following gap by the FV speed. In accord with

previous studies, a 1-s threshold was selected for the short time headway zone (Ervin et al., 2005; LeBlanc et al., 2013).

4.2.2. Reaction time
Reaction time was determined by a graphical method of manually comparing the FV acceleration and relative speed (LV

speed FV speed) curves, as proposed by Gurusinghe et al. (2002). Fig. 6 shows a plot of FV acceleration and relative speed in relation
to time. For every sharp (local minimum or maximum) change (stimulus) in relative speed, there is a corresponding sharp change
(response) in acceleration. The peaks are these points of stimulus and response, and the time between them is reaction time. The
stimulus and response peaks were identified manually by an analyst using an interactive plot in which hovering over a point shows its
coordinates.

Table 4
Frequency and descriptive statistics of variables.

FCW Road type Ambient light Weather Traffic density (veh/km/lane)

Freeway Surface road Daytime Nighttime Rainy Sunny Mean Std. Dev. Min Max

OFF 999 488 1028 459 415 1072 51.49 25.18 14.12 136.57
ON 963 550 1070 443 476 1037 51.84 25.65 15.45 138.64
All 1962 1038 2098 902 891 2109 51.67 25.41 14.58 139.32

FCW Travel speed (km/h) Time headway (s)

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

OFF 52.18 20.59 22.03 109.1 1.61 0.77 0.55 4.05
ON 49.95 18.9 22.5 96.68 1.66 0.81 0.52 4.54
All 51.06 19.79 22.42 103.28 1.64 0.79 0.54 4.43

FCW Distance headway (m) Short time headway proportion

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

OFF 23.27 15.61 6.23 80.39 0.19 0.32 0 1
ON 22.8 14.3 6.38 74.36 0.16 0.3 0 1
All 23.04 14.96 6.31 78.05 0.18 0.31 0 1

Fig. 6. Determining reaction time through identification of stimulus and response points.
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For example, in Fig. 6, a peak occurs at point AS on the relative speed curve. The corresponding peak on the acceleration curve is
AR. The time between AS and AR is defined as the reaction time TA. According to Ozaki (1993), reaction time changes during the
process of driving, and may correlate with relative distance, speed, and LV acceleration. Therefore, for every stimulus point, the
corresponding relative distance, speed, and LV acceleration were determined in addition to reaction time. They later served as
additional independent variables in the analysis of reaction time.

4.2.3. Parameters of the car-following model
Car-following model parameters reveal how drivers use distance and speed information during car-following. Differences in

parameters drivers exhibit between the warning and no-warning phases provide complementary information, and thus explanations
for the changes in observable performance measures. The Gazis-Herman-Rothery (GHR) model was used in this study because (1)
SPS:refid::bib1SPS:refid::e1 it represents the stimulus-response framework, the most widely used framework in car-following mod-
eling, and is the most studied car-following model; and (2) it directly clarifies how drivers adapt their behavior in response to
perceptions of distance, speed, and acceleration of the lead vehicle.

The main idea of the GHR model is that the acceleration of the following vehicle is determined by the driver’s reaction to the
speed and position differences of the vehicle in front, as defined in Eq. (1):

=a t V t V t
X t

( ) ( ) ( )
( )n n

z n n

n n
l (1)

where a n t_ ( ) is the acceleration of the following vehicle at time t, V t( )n n is the speed difference between the following vehicle
and the lead vehicle at time t( )n , Xn is the space headway between the following and lead vehicle, n denotes reaction time, and

, z, and l are parameters. A summary of the GHR parameters to be estimated can be found in Table 5.
A genetic algorithm (GA) was implemented to find the optimum values of the model parameters by minimizing the difference

between the values of simulated and observed following gaps. The GA proceeded as follows:

(1) A population consisting of N individuals was initialized, with each individual representing one parameter set of the GHR model;
(2) With data from the LV serving as externally controlled input, the simulated FV’s trajectory was calculated based on the GHR

model and its parameters. The simulated trajectory was then compared with the empirically observed trajectory from the SH-NDS
data to calculate the simulation error and the fitness of each individual.

The FV’s trajectory was simulated as follows: the FV’s speed V t( )n and inter-vehicle spacing S t( )n n1, were initialized with the
empirical SH-NDS data: = = =V t V t( 0) ( 0)n n

data and = = =S t S t( 0) ( 0)n n n n
data

1, 1, . After the acceleration a t( )n was computed by the
GHR model, future states of the following vehicle were generated iteratively, based on the state-updating rules defined in Eq. (2).

+ = +V t V t a t T( 1) ( ) ( )·n n n

+ = + +V t V t V t( 1) ( 1) ( 1)n n n n- 1, 1 (2)

+ = +
+ +

S t S t
V t V t

T( 1) ( )
( ) ( 1)

2
·n n n n

n n n n
- 1, 1,

1, 1,

where T is the simulation time interval, set as 0.1 s in this study, V t( )n n- 1, is the relative speed between a lead and following
vehicle, and Vn-1 is the velocity of LV, which was externally inputted.

(3) Crossovers between randomly selected individual pairs (parents) and mutations within randomly selected individuals were
implemented to produce individuals of the next generation (children); and

(4) Steps 2 and 3 were repeated until the termination criteria were satisfied.

For a detailed description of the model calibration, please refer to Zhu et al. (2018).

Table 5
Summary of GHR parameters and their bounds.

Parameter (unit) Short description Bounds

a Constant sensitivity coefficient [0 60]
zb Speed exponent [−10 10]

lb Space headway exponent [0 10]

n (s)a Reaction time [0.3 3]

Source: aSangster et al. (2013); bBrackstone and McDonald (1999); cSaifuzzaman et al. (2015).
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4.3. Statistical analysis

In this study, all drivers were involved in multiple car-following events, which is typical of comparative experiments with re-
peated measures. The term “repeated measures” refers to data with multiple observations of the same sampling unit. Because it is
usually reasonable to assume that observations of the same unit are correlated, statistical analysis of repeated measures data must
address the issue of covariation between measures of the same unit (Littell et al., 2000). Therefore, a mixed model methodology that
permits the covariance structure to be incorporated into the statistical model was applied in this study.

Statistical mixed models affirm that the observed data consists of two parts, fixed effects and random effects. Fixed effects are
parameters that do not vary, while random effects are parameters that are themselves random variables. In the presented study, the
independent variables described in Section 4.1 and their interaction terms were treated as fixed effects, and the drivers were treated
as random effects to account for within-subject covariance of repeated observations of the same driver.

For simplicity, this study only considered random intercepts. Suppose we have N observations, p fixed effects, and q random
intercepts, then the mixed model is written as

= + +y X Z (3)

where ×y RN 1 is the dependent variable (e.g., mean time headway), ×X RN P is the matrix of the p fixed-effect predictor variables
(e.g., FCW state, road type, and weather), ×Rp 1 is the column vector of the fixed-effect regression coefficients, ×Z RN q is the
design matrix of the q random effects, ×Rq 1 is the column vector of the q random intercepts, and ×RN 1 is the unobserved vector
of the independent and identically distributed Gaussian random errors.

To better illustrate the concept, we offer an example where the mean time headway is the dependent variable. The following
equations show how the vectors and matrices described above look like. With a random intercept setting, Z is a sparse matrix that
codes the driver to which a car-following event belongs. Each column of Z is one driver, and each row represents one car-following
event. If the event belongs to the driver in that column, the cell will show 1; otherwise, it will show 0.

=

×

y

timeheadway
1.3
1.6

1.5 N 1 (4)

=

×

X

Fixedintercept FCW Roadtype Speed Density
1 1 0
1

1

0

1

1

1

51 34
67

42

67

43
N p (5)

=

×

0.6
0.06

0.04

0.003
0.005 p 1 (6)

=

×

Z

Driver Driver Driver Driver Driver
1 0 0
0

0

1

0

0

0

0 0
0

1

0

0

q q

N q

1 2 3 1

(7)

If we were to estimate random effects , it would be a column vector containing q random intercepts. However, in a mixed model,
we do not estimate specifically. Instead, we assume that follows a normal distribution with mean zero and variance 2.

N~ (0, )2 (8)

The reason for the mean zero is that we have directly estimated the fixed effects (including the fixed intercept), and the random
intercepts are modeled as deviations from the fixed intercept.

To analyze the directions of different fixed effects on the dependent variables, least squares means were used for the discrete
independent variables, considering that our data were unbalanced (see Table 4). Balanced data refers to a setting in which all
combinations of all factors are sampled equally often. With balanced data, we would be able to use group means to investigate the
treatment effect. However, this is not the case when the data are unbalanced: simple averages do not work because all factors do not
have an equal chance to affect the response. With least squares means, we can estimate the averages that would have existed if the
data had been balanced (Cai, 2014). The estimates indicate the effects of a given factor, with all other factors being equal.

All the analyses were performed using the PROC MIXED procedure in SAS® 9.4. The statistical significance level was set at
α = 0.05.
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5. Results and analysis

5.1. Mean time headway

The analysis for mean time headway showed significant main effects for FCW, travel speed, ambient light, and traffic density. The
directions of these significant main effects are shown in Table 6. Drivers maintained shorter headways in the warning phase (least
squares means = 1.42 s) than in the no-warning phase (least squares means = 1.66 s), and the difference was statistically significant
(F (1,42) = 69.48, p < 0.0001). No significant FCW-related interactions were found. The detailed parameter estimation results can
be found in the appendix in Table A.1.

5.2. Proportion of time in short headways

The proportion of time in short headways was also analyzed across all six variables (listed in Table 3) and associated interactions.
Results showed significant main effects for ambient light and roadway type, and the directions of these effects are shown in Table 7.
The effects of FCW were not significant: F (1,42) = 0.85, p = 0.3619. The short-headway percentage in the warning phase (14.88%)
was slightly lower than that of the no-warning phase (15.35%). Table A.2 presents the detailed parameter estimation results for the
short-time-headway proportion linear mixed model.

5.3. Reaction time

Reaction time was calculated for the 6,092 pairs of stimulus-response points identified in the FV acceleration and relative speed
curves. Besides the variables listed in Table 3, additional variables that may affect reaction time were included as independent
variables for the reaction time analysis. These variables were relative speed (LV speed minus FV speed), relative distance, and LV
acceleration. The absolute values of relative speed and LV acceleration were used, and two corresponding discrete variables in-
dicating their signs were added.

The results showed that the FCW warning condition did not have a significant effect on reaction time. However, two significant
interaction (with the warning condition) effects were observed: Warning Condition×Relative Speed, F(1, 6018) = 7.60, p = 0.0059,
and Warning Condition×Sign of LV Acceleration, F(1, 91) = 5.76, p = 0.0184. As shown in Fig. 7(a), the reduction in reaction time
caused by the FCW increased when relative speed increased, with a 0.22-s reduction in reaction time when relative speed was 2.5 m/
s. Fig. 7(b) shows that when the LV is accelerating, the presence of a warning resulted in a 0.07-s decrease in reaction time.

Several independent variables were found to have significant main effects on reaction time, including ambient light, weather,
relative speed, and the sign of relative speed. The directions of these effects are shown in Table 8.

5.4. Parameters of the GHR model

As noted in Section 5.1, travel speed, ambient light, and traffic density all had significant effects on headway, and it can be
assumed that they may also affect car-following model parameters. To disentangle the effects of the warning condition from these
other variables, the car-following events for each driver were grouped into the possible value combinations of all four variables, as
shown in Table 9. A total of 179 groups of car-following events, each with a minimum of 10 events, were identified. Speed and
density were categorized into two levels, low and high, according to their median values. Parameters of the GHR model, α, z, l, and τn

(described in Tables 5 and 10), were calibrated independently for each group, and then a linear mixed model was developed for the 4
GHR parameters to test whether the warning condition significantly affected the parameters. In the linear mixed model, warning
condition, speed, density, ambient light, and their interaction terms were treated as fixed effects, and drivers were treated as random
effects.

Table 6
Significant main effects for mean time headway.

Variables Statistical results Conditions with longer headway Mean headway

FCW F(1,42) = 69.48, p < 0.0001 OFF 1.66 s vs. 1.42 s
Travel speed F(1,2764) = 125.12, p < 0.0001 Higher speed –
Ambient light F(1,47) = 50.18, p < 0.0001 Nighttime 1.72 s vs.1.36 s
Traffic density F(1,2764) = 56.00, p < 0.0001 Lower traffic density –

Table 7
Significant main effects for proportion of time in short headways.

Variables Statistical results Conditions with lower short-headway proportion Short-headway proportion

Ambient light F(1,47) = 8.88, p = 0.0046 Nighttime 13.95% vs. 16.28%
Roadway type F(1,45) = 12.90, p = 0.0008 Surface road 11.89% vs. 18.34%

M. Zhu, et al. Transportation Research Part C 111 (2020) 226–244

236



5.4.1. Parameter differences between warning and no-warning
Table 10 summarizes the effects of the warning condition on the GHR parameters and the calibration errors. The calibration errors

from the warning and no-warning phases were not significantly different. This indicates that the car-following behaviors were

Fig. 7. Reaction time for the two significant FCW interaction effects.

Table 8
Significant main effects for reaction time.

Variables Statistical results Conditions with shorter reaction time Reaction time

Ambient light F(1,47) = 9.16, p = 0.0040 Nighttime 1.34 s vs.1.43 s
Weather F(1,40) = 11.36, p = 0.0017 Sunny 1.35 s vs.1.43 s
Relative speed F(1,6018) = 16.82, p < 0.0001 Lower relative speed –
Sign of relative speed F(1,50) = 7.43, p < 0.0088 Negative (approaching) 1.36 s vs. 1.42 s

Table 9
Drivers’ car-following events in combinations of ambient light, warning condition, travel speed, and traffic density values.

Group ID Driver ID Ambient light Warning condition Speed Density Number of events

1 1 Daytime No-warning High High 13
2 1 Daytime No-warning High Low 16
3 1 Daytime No-warning Low High 18
4 1 Daytime Warning High High 18
5 1 Daytime Warning High Low 12
6 1 Daytime Warning Low High 18
7 1 Nighttime No-warning High High 20
8 1 Nighttime No-warning High Low 24
9 1 Nighttime No-warning Low High 12
174 60 Daytime Warning High Low 10
175 60 Daytime Warning Low High 10
176 60 Daytime Warning Low Low 10
177 60 Nighttime Warning High Low 17
178 60 Nighttime Warning Low High 18
179 60 Nighttime Warning Low Low 10

Table 10
Summary of the effects of the warning condition on GHR parameters and calibration errors.

Parameter (unit) Short description No-warning Warning Statistical results

Constant sensitivity coefficient 30.8968 25.9432 F(1,123) = 1.22, p = 0.2716
z Speed exponent 0.4561 0.1660 F(1,123) = 2.46, p = 0.1195
l Space headway exponent 1.6640 1.2454 F(1,123) = 4.68, p = 0.0324

n (s) Reaction time 1.3829 1.4423 F(1,123) = 0.80, p = 0.3726
RMSPE Calibration error 0.1531 0.1430 F(1,123) = 1.03, p = 0.3112
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modeled at an equal level of accuracy in the warning and no-warning phases, hence the comparison of model parameters is rational.
The FCW had no significant effects on the GHR parameters, other than on the space headway exponent l. The FCW warning caused a
0.4186 reduction in the space headway exponent.

5.4.2. Scenario simulation
According to the acceleration function of the GHR model specified in Eq. (1), reduction in the space headway exponent causes

drivers to be more sensitive to the following gap and perform larger accelerations under the same space headway condition. To
further illustrate the effects of the FCW on car-following behavior, the response of the GHR model to a simple scenario was simulated.
The simulation, consisting of a ramped increase in LV speed, shows the car-following behavior as captured by the model, thus
excluding unpredictable and/or time-variant behavior as may be present in the original data.

As shown in Fig. 8, the simulation began with the FV and LV driving at the same speed (20 m/s), with a space headway of 20 m.
When travel time reached 5 s, the LV accelerated with a constant 1 m/s2 acceleration rate for 10 s; then the LV kept a constant speed
of 30 m/s. Fig. 8 shows the predicted effect of the warning by simulating the average model parameters on the FV in the warning and
no-warning phases. As can be seen, the FV maintained shorter following distances and made larger accelerations and decelerations in
the warning phase as compared to the no-warning phase.

5.4.3. Fundamental diagram comparison
To provide a more insightful interpretation of driver behavioral differences between the warning and no-warning phases, fun-

damental diagrams that describe homogeneous and equilibrium traffic were constructed in order to analyze the effects on the GHR
model parameters. The relationship between speed and space headway at a steady-state condition can be found in Leutzbach (1988):
if z l1 and 1:
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where se and ve are equilibrium space headway and speed, respectively; vdes is the desired speed of drivers, specified here as 120 km/h
according to speed limits in Shanghai; sjam is the standstill space headway, fixed here at 8.09 m according to real-world data; and , z

Fig. 8. Effects of FCW as simulated by average GHR model parameters in warning and no-warning phases.
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and l are the constant sensitivity coefficient, speed exponent, and space headway exponent, respectively.
Each of the 179 groups of car-following events had a unique set of GHR parameters that corresponded to a particular speed-

headway relationship. Therefore, for the same equilibrium space headway, different equilibrium speeds were able to be derived using
the GHR parameters of the different event groups. The mean value of these equilibrium speeds was used as the aggregated equili-
brium speed. Translation from the microscopic space headway s into density is given by:

=
s
1

(10)

where l is the vehicle length, fixed here to 5 m. The flow Q is derived by:

=Q v
s (11)

Fundamental diagrams were plotted, as shown in Fig. 9. The results of the warning and no-warning phases are aggregated and
presented as red solid lines and blue dashed lines, respectively. Under the same steady-state speed, the warning phase exhibited a
slightly shorter space headway than the no-warning phase (Fig. 9-d). As a result, the activation of the FCW can be said to have
increased traffic capacity (Fig. 9-a).

6. Summary and discussion

This study has investigated how an FCW system with a headway monitoring function can affect the time headway and reaction
time during car following, and offers an explanation of the performance changes by examining the changes in parameters of a
fundamental car-following model.

6.1. Headway

Employment of the FCW system with a headway monitoring function resulted in a decrease in headway time, while the proportion
of time drivers spent in short headways (< 1 s) was not affected, indicating that the FCW may increase traffic efficiency without

Fig. 9. Fundamental diagrams of the warning and no-warning phases derived from the GHR model.
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degrading safety. The results of this study concur with results of a similar simulator study conducted by Saffarian et al. (2013), which
investigated the effects of a car-following assistance system displaying LV acceleration and time headway. Saffarian et al. found that
the system reduced both the mean and standard deviation of the time headway but did not increase the occurrence of potentially
unsafe headways of less than 1 s.

The parameter estimations of the GHR car-following model provide complementary information to the changes in time headway.
For example, a reduction in the space headway exponent was observed when the FCW was enabled. As illustrated by the simulation,
this reduction in the space headway exponent suggests that when drivers are alerted by a warning system, they become more
sensitive to the following gap and feel able to make larger accelerations under the same space headway. These changes are easy to
understand: the numerically displayed and continuously updated time headway provided by the FCW system assists drivers’ naturally
more limited distance estimation capability, and the enhanced capability influences their behavior.

The amount of change in mean time headway was 0.24 s in our study, which is at the same level of magnitude with previous
studies’ results (0.2–0.5 s) as summarized in Table 1 in the literature review above. The fact that the magnitude of change is relatively
small may indicate support for the findings of Ervin et al. (2005) that adaptive cruise control (ACC) impacts are substantially more
marked and robust across driving conditions than those of FCW. That is, human driver behaviors are not as easily influenced by an
advisory system such as FCW as they are by a control assistance system such as ACC. The small amount of change additionally
suggests that a higher penetration rate is needed for an assistance system to greatly influence driver behavior.

The results of this study did not always concur with those of similar studies conducted with test tracks, driving simulators and
NDS. Table 1 above summarizes the results of these studies, which differ as to the size and even direction of FCW effects. These
contradictory effects could be caused by the following factors:

(1) The warning logics and modalities of the FCW systems differed. For example, in our study, the FCW gave visual and audial
warnings when the time headway decreased to 0.6 s or less, while in Shinar and Schechtman (2002), a visual-only warning was
issued when time headway dropped to 1.2 s.

(2) Drivers’ behavior in natural driving situations might differ from their behavior in controlled experimental situations. In con-
trolled test track studies, drivers are aware that they are being observed and thus may pay more attention to the warning.

(3) Drivers from different countries or operating different vehicle types might vary in driving behavior. For example, Bao et al.
(2012) and LeBlanc et al. (2013) reached different conclusions: when FCW was enabled, headway increased with heavy trucks
while it decreased with light vehicles. LeBlanc et al. explained that the difference might be due to truck drivers’ professional
status leading them to be generally more conservative.

6.2. Reaction time

Driver reaction time has a substantial influence on traffic flow stability; specifically, traffic stability increases with a decrease in
reaction time (Treiber et al., 2006). The current study found that the presence of warnings resulted in a 0.22 s decrease in reaction
time when the absolute values of relative speed reached 2.5 m/s (i.e., when the FV was rapidly approaching or falling back from the
LV); warnings resulted in a 0.07 s decrease when the LV was accelerating. These results suggest that the FCW system could be
beneficial to traffic stability.

According to Olson (2002), driver reaction time consists of four components: detection, estimation, decision, and movement. In
the car-following process, the detection interval starts when the relative speed and/or relative distance changes, and ends when the
driver becomes consciously aware that the relative motion state has changed. Having become aware, the driver then estimates the
relative distance or relative speed. With this estimation completed, the driver must decide what action, if any, is appropriate. The
typical response action is a change of speed and/or direction. Last, in the movement interval, the driver lands his or her foot on the

Fig. 10. Reaction time with FCW disabled and enabled.
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brake pedal or adjusts the steering wheel.
As shown in Fig. 10, the FCW system may shorten both the detection and estimation intervals of car-following reaction time, and

thus shorten its total length. The likely reason is similar to the reason for changes in headway behavior: the continuously updated
time headway provided by the FCW assists drivers’ observations and estimations of distance and speed changes, permitting drivers to
react more quickly.

This study found that ambient light, weather, relative speed, and the sign of relative speed also affected reaction time. It was
surprising to find that drivers had shorter reaction times in nighttime driving. A possible explanation is that the drivers may be more
cautious in nighttime driving, pay more attention to the driving task, and thus respond more quickly.

The mean and median values of the reaction times in this study were 1.31 s and 1.10 s respectively, which are slightly lower than
the 1.5 s mean value reported by Gurusinghe et al. (2002). Although several methods (Taylor et al., 2015; Ma and Andréasson, 2006)
have been proposed to automatically calculate the instantaneous reaction time during car-following, this study chose to extract the
reaction time manually, in consideration of accuracy. A method that is both efficient and accurate could be developed in future work.

6.3. Implications for car-following modeling in the V2V environment

With the development of vehicle-to-vehicle (V2V) communication technologies, more and more advisory messages enter drivers’
daily lives, many of which pertain to the measures of speed and headway between two consecutive vehicles. Such messages, which
help a vehicle to collect its neighbor’s kinetic information and provide the vehicle with warnings as they are needed, may have a
significant impact on driving behavior. The emerging V2V technology thus creates a challenge for engineers who want to incorporate
V2V influence into traditional car-following models. The results of this study provide meaningful insights toward meeting this
challenge.

This study showed that use of the FCW system resulted in a reduction in the space headway exponent of the GHR model.
Therefore, a straightforward way to incorporate the FCW into the GHR model may be to add a parameter k to represent the impact of
V2V communication on driver reaction to the space headway, as shown in Eq. (12).

=a t V t V t
X t

( ) ( ) ( )
( )n n

z n n

n n
l k( ) (12)

where all things hold the same as Eq. (1), except that an additional parameter k is added. This illustrates one of the possible
adaptations to the model. Future studies are needed to test the effectiveness of this adaptation and to find better ways of modeling
car-following behavior with V2V communication.

7. Conclusion

This study used high-validity naturalistic driving data to investigate the impact of an FCW system on car-following headway,
reaction time and other internal mechanisms. Employment of the FCW system resulted in a reduction in headway and a conditional
reduction in reaction time, while the occurrence of potentially unsafe short headways (< 1 s) was not increased. Indeed, examining
the changes in parameters of the GHR car-following model suggested that drivers follow more closely with the FCW because the
system helps them become more sensitive to the changes in the following gap.

The major implications derived from this study are:

• An FCW system with a headway monitoring function may increase both traffic efficiency and stability without degrading safety.
Therefore, active safety systems (such as FCW) and V2V communication technologies are recommended for future transport
systems.

• Providing time headway feedback to drivers may help them respond more quickly by assisting them in observing and estimating
the changes in distance and speed.

• The FCW system indeed resulted in differences in the internal car-following mechanisms, justifying the need to incorporate the
impacts of emerging driving assistance systems and V2V technologies into traffic flow modeling. Future studies are needed to
determine how to better model these impacts.
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Appendix. Parameter estimates for the liner mixed model

This appendix presents the results of the parameter estimations for the linear models used in the mean time headway and short
time headway-proportion analyses. The results of the linear models used in analyzing reaction times and car-following model
parameters are not presented because of the abundance of parameters and limited space (see Tables A1 and A2).

Table A1
Parameter estimation results for the mean-time headway linear mixed model.

Effect FCW Light Roadway Weather Estimate Std. Dev.

Intercept 2.9272 0.1431
Speed 0.01184 0.009207
FCW ON −0.1355 0.1165
FCW OFF 0 .
Light Nighttime 0.2101 0.1256
Light Daytime 0 .
Roadway Freeway −0.891 0.1364
Roadway Surface road 0 .
Weather Rainy 0.2199 0.1994
Weather Sunny 0 .
Density −0.0016 0.001456
Speed*FCW ON −0.00133 0.005479
Speed*FCW OFF 0 .
FCW*Light ON Nighttime −0.00321 0.04854
FCW*Light ON Daytime 0 .
FCW*Light OFF Nighttime 0 .
FCW*Light OFF Daytime 0 .
FCW*Roadway ON Freeway −0.03837 0.05297
FCW*Roadway ON Surface road 0 .
FCW*Roadway OFF Freeway 0 .
FCW*Roadway OFF Surface road 0 .
FCW*Weather ON Rainy −0.1344 0.07788
FCW*Weather ON Sunny 0 .
FCW*Weather OFF Rainy 0 .
FCW*Weather OFF Sunny 0 .
Density*FCW ON −0.00157 0.001082
Density*FCW OFF 0 .
Speed*Light Nighttime −0.00066 0.006098
Speed*Light Daytime 0 .
Speed*Roadway Freeway 0.02671 0.007632
Speed*Roadway Surface road 0 .
Speed*Weather Rainy 0.007898 0.008952
Speed*Weather Sunny 0 .
Speed*Density −0.00199 0.000105
Light*Roadway Nighttime Freeway −0.06202 0.05904
Light*Roadway Nighttime Surface road 0 .
Light*Roadway Daytime Freeway 0 .
Light*Roadway Daytime Surface road 0 .
Light*Weather Nighttime Rainy 0.01235 0.09473
Light*Weather Nighttime Sunny 0 .
Light*Weather Daytime Rainy 0 .
Light*Weather Daytime Sunny 0 .
Density*Light Nighttime −0.00095 0.001109
Density*Light Daytime 0 .
Roadway*Weather Freeway Rainy −0.1589 0.09218
Roadway*Weather Freeway Sunny 0 .
Roadway*Weather Surface road Rainy 0 .
Roadway*Weather Surface road Sunny 0 .
Density*Roadway Freeway 0.006351 0.001118
Density*Roadway Surface road 0 .
Density*Weather Rainy −0.00135 0.002003
Density*Weather Sunny 0 .
Random intercept variance 0.3271
Null Model Likelihood Ratio Test Chi-Square = 61.92 (p < 0.001)
Final Log likelihood 5080.3
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