

同济大学交通运输工程学院 COLLEGE OF TRANSPORTATION ENGINEERING TONGJI UNIVERSITY

Calibrating Car-following Models For Chinese Drivers Using Naturalistic Driving Data From Urban Expressways

Meixin Zhu^a, Xuesong Wang^a, Andrew P. Tarko^b ^aCollege of Transportation Engineering, Tongji University, China ^bLyles School of Civil Engineering, Purdue University, USA

January 9, 2017 Washington, D.C.

TRB's Standing Committee on Traffic Flow Theory and Characteristics (AHB45)

Overview

Introduction

- Data Preparation
 - Data collection
 - Car-following period extraction
- Model Calibration and Validation
 - Genetic algorithm
 - Calibration and validation errors
- US and China Comparison
 - Parameter comparison
 - Fundamental diagram comparison
 - Discussion and Conclusions

Introduction

■ Car-following model

- Cornerstone for microscopic traffic simulation and intelligent vehilcle;
- The development and investigation of these models have been almost entirely based on experiments conducted in Western countries;
- Different driving styles, types of vehicles, traffic regulations as well as cultural environments (Lindgren et al., 2008b) may result in **considerable differences in driving behavior and traffic operation**.

Introduction

Short-following example of Chinese driver

• A car-following model performing well in Western countries may perform poorly in developing countries.

Introduction Motivation

- How well are the existing models able to model Chinese drivers' car-following behavior?
- What are the main disparities between car-following behavior in China and that in the US?

Data Preparation

Shanghai Naturalistic Driving Study (SH-NDS)

- From 2012 to 2015;
- Five vehicles with SHRP2 NextGen data acquisition systems
- Each participant drives the vehicle for 2 months;
- Sixty drivers' data, with a total mileage of 161,055 km, have been collected.

Data Preparation

■Data items

- Forward radar data
- Vehicle network data
- GPS data
- Accelerometer data
- Four synchronized camera views
- Collection frequency: 10-50 Hz

Four camera views from the SH-NDS

Data PreparationForward radar data

- Track, at most, 8 vehicles simultaneously
- T0 to T7
- Unique target ID
- X and Y positions
- X and Y velocities

Front video

Radar target map

Data Preparation

■ Car-following periods extraction

- Initial criteria followed Ervin et al. (2005) and Higgs and Abbas (2013);
- Iterative adjustment:
 - Extract potential car-following periods;
 - > Review corresponding video material to adjust the criteria.
- Final criteria:
 - Radar target's identification remained constant;
 - 7m<range<120m, and speed of the research vehicle>5m/s;
 - ➤ -2.5m<lateral distance<2.5m;</p>
 - ➤ -2.5m/s<relative speed<2.5m/s;</p>
 - > Length >15s.

Data Preparation

Car-following periods analyzed

• Focusing on car-following periods on urban expressways

Road type	Urban expressway
Num. of drivers	42
Num. of periods each driver	50 in total, 40 for calibration and 10 for validation
Total car-following periods	2,100
Cumulative time length	863 minutes

Model Calibration and Validation Procedure

Model Calibration and Validation ■Car-following models investigated

- Five represtantive car-following models
- a) Gaxis-Herman-Rothery (GHR) model: stimulus-based model
- b) Gipps model: safety-distance model
- c) Intelligent Driver Model (IDM): desired measures model
- d) Full Velocity Difference (FVD) model: optimal velocity model
- e) Wiedemann car-following model: psycho-physical model

Model Calibration and Validation

Genetic algorithm: objective function

- Calibration based on spacing is more robust and efficient than speed or acceleration (Punzo and Montanino, 2016).
- Root mean square percentage errors (RMSPE) of spacing:

 $RMSPE = \sqrt{\frac{\sum_{i=1}^{N} (S_{i}^{sim} - S_{i}^{obs})^{2}}{\sum_{i=1}^{N} (S_{i}^{obs})^{2}}}$

i: observation

- S_i^{sim} : the *i*th modeled spacing
- s_i^{obs} : the *i*th observed spacing

N: is the number of observations

Model Calibration and Validation

Genetic algorithm: implementation

- The Genetic Algorithm Toolbox in MATLAB[®] was used;
- Optimization repeated 12 times for each driver, minimum error (i.e., RMSPE) was selected;
- Tested with synthetic data:
- \succ Set the GHR parameters as: $\tau_n = 1, \ \alpha = 1, \ \beta = 1, \text{ and } \gamma = 1$
- ➤ Generate synthetic car-following data were generated.
- Calibration result: RMSPE=0.003

$$\tau_n = 1.00, \ \alpha = 1.19, \ \beta = 0.90, \text{ and } \gamma = 0.99$$

Algorithm setting	Method used
Population size	300 (500 for Wiedemann)
Maximum num.	300 (1300 for Wiedemann)
Stall generations	100 (150 for Wiedemann)
Convergence	10-6
tolerance	10 °
Fitness scaling	Rank
Parent selection	Stochastic uniform
Children	Elite, crossover and
reproduction	mutation
Mutation	Gaussian
Crossover	Scatter
	1.4

Model Calibration and ValidationCalibration and validation errors

Description of the two studies

Item	Current study	Sangster et al. (2013)	
Database	Shanghai Naturalistic Driving Study (SH-NDS)	VTTI 100-car Naturalistic Driving Study (VTTI 100-Car)	
Num. of car-following periods	2100	More than 2000	
Num. of drivers	42	8	
Road	Inner Ring, Middle Ring, and Outer Ring expressways, Shanghai	Dulles Airport Access Road, multilane expressways, near Washington, D.C.	
Objective function	RMSPE of space	RMSPE of space and speed	
Optimization method	Genetic algorithm	Genetic algorithm, the maximum acceleration and comfort deceleration were observed from data	

Parameters of the IDM model

• Desired time headway one second shorter than that of VTTI 100-Car Study; the most influential IDM parameter (Punzo et al., 2015)

Nomo	SH-NDS	VTTI 100-Car	t voluo	p value
	Mean	Mean	t value	
Desired speed (km/h)	108.0	101.9	0.16	0.8734
Desired time headway (s)	0.8416	1.72	-7.53	0.0001
Maximum acceleration (m/s^2)	0.6747	5.948	-6.57	0.0003
Comfortable deceleration (m/s^2)	0.9198	5.961	-6.76	0.0002
Acceleration exponent	7.8837	16.79	-2.56	0.0276
Standstill gap (m)	3.0912	2.3713	2.29	0.0355
				17

Fundamental Diagram derived by the IDM model

Fundamental Diagram derived by the IDM model

• Shoter following gap

- **Fundamental Diagram derived by the IDM model**
- Larger capacity

Discussion

Better car-following models for simulation in China

- The Wiedemann model is used by the most popular microscopic traffic simulation tool in China—VISSIM[®].
- Compared to the Wiedemann, the FVD model showed:
 - ➢ Higer performance
 - ➢ More stable performance
 - ➤ More easily to calibrate: number of parameters 5 vs. 13
- The FVD may be more suitable than Wiedemann to be applied for microscopic traffic simulation in China.

Discussion

Why Chinese drivers following tightly

- Aggressive: lower perception of risk?
- Cultural environment: in a rush?
- Avoiding cut-in?

Conclusions

- The full velocity difference (FVD) model performed best in modeling Chinese drivers' behavior compared to the GHR, Gipps, IDM, and Wiedemann models.
- According to the IDM model, Chinese drivers adopt shorter desired time headways and following gaps than US drivers.
- Simulation models and components of intelligent vehicles must be calibrated to Chinese conditions before used in China.

THANKS

Corresponding author: Xuesong Wang E-mail address: wangxs@tongji.edu.cn

同济大学交通运输工程学院 COLLEGE OF TRANSPORTATION ENGINEERING TONGJI UNIVERSITY