Calibrating Car-following Models For Chinese Drivers Using Naturalistic Driving Data From Urban Expressways

Meixin Zhua, Xuesong Wanga, Andrew P. Tarkob

aCollege of Transportation Engineering, Tongji University, China
bLyles School of Civil Engineering, Purdue University, USA

January 9, 2017 Washington, D.C.

TRB’s Standing Committee on Traffic Flow Theory and Characteristics (AHB45)
Overview

■ Introduction
■ Data Preparation
 • Data collection
 • Car-following period extraction
■ Model Calibration and Validation
 • Genetic algorithm
 • Calibration and validation errors
■ US and China Comparison
 • Parameter comparison
 • Fundamental diagram comparison
■ Discussion and Conclusions
Introduction

- Car-following model
 - Cornerstone for microscopic traffic simulation and intelligent vehicle;
 - The development and investigation of these models have been almost entirely based on experiments conducted in Western countries;
 - Different driving styles, types of vehicles, traffic regulations as well as cultural environments (Lindgren et al., 2008b) may result in considerable differences in driving behavior and traffic operation.
Introduction

Short-following example of Chinese driver

- A car-following model performing well in Western countries may perform poorly in developing countries.
Introduction

Motivation

• How well are the existing models able to model Chinese drivers’ car-following behavior?

• What are the main disparities between car-following behavior in China and that in the US?
Data Preparation

Shanghai Naturalistic Driving Study (SH-NDS)

• From 2012 to 2015;
• Five vehicles with SHRP2 NextGen data acquisition systems
• Each participant drives the vehicle for 2 months;
• Sixty drivers’ data, with a total mileage of 161,055 km, have been collected.
Data Preparation

Data items

- Forward radar data
- Vehicle network data
- GPS data
- Accelerometer data
- Four synchronized camera views
- Collection frequency: 10-50 Hz

Four camera views from the SH-NDS
Data Preparation

- **Forward radar data**
 - Track, at most, 8 vehicles simultaneously
 - T0 to T7
 - Unique target ID
 - X and Y positions
 - X and Y velocities
Data Preparation

- Car-following periods extraction

- Initial criteria followed Ervin et al. (2005) and Higgs and Abbas (2013);
- Iterative adjustment:
 - Extract potential car-following periods;
 - Review corresponding video material to adjust the criteria.
- Final criteria:
 - Radar target’s identification remained constant;
 - $7m < \text{range} < 120m$, and speed of the research vehicle $> 5m/s$;
 - $-2.5m < \text{lateral distance} < 2.5m$;
 - $-2.5m/s < \text{relative speed} < 2.5m/s$;
 - Length $> 15s$.
Data Preparation

Car-following periods analyzed

- Focusing on car-following periods on urban expressways

<table>
<thead>
<tr>
<th>Road type</th>
<th>Urban expressway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. of drivers</td>
<td>42</td>
</tr>
<tr>
<td>Num. of periods each driver</td>
<td>50 in total, 40 for calibration and 10 for validation</td>
</tr>
<tr>
<td>Total car-following periods</td>
<td>2,100</td>
</tr>
<tr>
<td>Cumulative time length</td>
<td>863 minutes</td>
</tr>
</tbody>
</table>
Model Calibration and Validation

Procedure

- **Calibration data**
- **Car-following models**
- **Genetic algorithm**
- **Validation data**

- Calibration errors
- Optimal parameters
- Validation errors
Model Calibration and Validation

Car-following models investigated

- Five represtantive car-following models

 a) Gaxis-Herman-Rothery (GHR) model: stimulus-based model

 b) Gipps model: safety-distance model

 c) Intelligent Driver Model (IDM): desired measures model

 d) Full Velocity Difference (FVD) model: optimal velocity model

 e) Wiedemann car-following model: psycho-physical model
Model Calibration and Validation

Genetic algorithm: objective function

- Calibration based on spacing is more robust and efficient than speed or acceleration (Punzo and Montanino, 2016).
- Root mean square percentage errors (RMSPE) of spacing:

\[
RMSPE = \sqrt{\frac{\sum_{i=1}^{N} (S_{i}^{\text{sim}} - S_{i}^{\text{obs}})^2}{\sum_{i=1}^{N} (S_{i}^{\text{obs}})^2}}
\]

- \(i\): observation
- \(S_{i}^{\text{sim}}\): the \(i\)th modeled spacing
- \(S_{i}^{\text{obs}}\): the \(i\)th observed spacing
- \(N\): is the number of observations
Model Calibration and Validation

Genetic algorithm: implementation

- The Genetic Algorithm Toolbox in MATLAB® was used;
- Optimization repeated 12 times for each driver, minimum error (i.e., RMSPE) was selected;
- Tested with synthetic data:
 - Set the GHR parameters as: $\tau_n = 1$, $\alpha = 1$, $\beta = 1$, and $\gamma = 1$
 - Generate synthetic car-following data were generated.
 - Calibration result: RMSPE = 0.003

<table>
<thead>
<tr>
<th>Algorithm setting</th>
<th>Method used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>300 (500 for Wiedemann)</td>
</tr>
<tr>
<td>Maximum num. of generations</td>
<td>300 (1300 for Wiedemann)</td>
</tr>
<tr>
<td>Stall generations</td>
<td>100 (150 for Wiedemann)</td>
</tr>
<tr>
<td>Convergence tolerance</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Fitness scaling</td>
<td>Rank</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Stochastic uniform</td>
</tr>
<tr>
<td>Children reproduction</td>
<td>Elite, crossover and mutation</td>
</tr>
<tr>
<td>Mutation</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Crossover</td>
<td>Scatter</td>
</tr>
</tbody>
</table>
Model Calibration and Validation

 Calibration and validation errors

The FVD performed best:
1) second lowest calibration error and lowest validation error;
2) smallest standard deviation of error;
3) no occurrences of collision or backward movement.
US and China Comparison

Description of the two studies

<table>
<thead>
<tr>
<th>Item</th>
<th>Current study</th>
<th>Sangster et al. (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>Shanghai Naturalistic Driving Study (SH-NDS)</td>
<td>VTTI 100-car Naturalistic Driving Study (VTTI 100-Car)</td>
</tr>
<tr>
<td>Num. of car-following periods</td>
<td>2100</td>
<td>More than 2000</td>
</tr>
<tr>
<td>Num. of drivers</td>
<td>42</td>
<td>8</td>
</tr>
<tr>
<td>Road</td>
<td>Inner Ring, Middle Ring, and Outer Ring expressways, Shanghai</td>
<td>Dulles Airport Access Road, multilane expressways, near Washington, D.C.</td>
</tr>
<tr>
<td>Objective function</td>
<td>RMSPE of space</td>
<td>RMSPE of space and speed</td>
</tr>
<tr>
<td>Optimization method</td>
<td>Genetic algorithm</td>
<td>Genetic algorithm, the maximum acceleration and comfort deceleration were observed from data</td>
</tr>
</tbody>
</table>
US and China Comparison

Parameters of the IDM model

- Desired time headway one second shorter than that of VTTI 100-Car Study; the most influential IDM parameter (Punzo et al., 2015)

<table>
<thead>
<tr>
<th>Name</th>
<th>SH-NDS Mean</th>
<th>VTTI 100-Car Mean</th>
<th>t value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired speed (km/h)</td>
<td>108.0</td>
<td>101.9</td>
<td>0.16</td>
<td>0.8734</td>
</tr>
<tr>
<td>Desired time headway (s)</td>
<td>0.8416</td>
<td>1.72</td>
<td>-7.53</td>
<td>0.0001</td>
</tr>
<tr>
<td>Maximum acceleration (m/s^2)</td>
<td>0.6747</td>
<td>5.948</td>
<td>-6.57</td>
<td>0.0003</td>
</tr>
<tr>
<td>Comfortable deceleration (m/s^2)</td>
<td>0.9198</td>
<td>5.961</td>
<td>-6.76</td>
<td>0.0002</td>
</tr>
<tr>
<td>Acceleration exponent</td>
<td>7.8837</td>
<td>16.79</td>
<td>-2.56</td>
<td>0.0276</td>
</tr>
<tr>
<td>Standstill gap (m)</td>
<td>3.0912</td>
<td>2.3713</td>
<td>2.29</td>
<td>0.0355</td>
</tr>
</tbody>
</table>
US and China Comparison

- Fundamental Diagram derived by the IDM model

\[
Q = \frac{v}{s + l}
\]

\[
\rho = \frac{1}{s + l}
\]

\[
s_e = \frac{s_{jam} + \tilde{T}}{\sqrt{1 - \left(\frac{v_e}{\tilde{v}}\right)^\beta}}
\]

- \(s_e \): equilibrium gap
- \(v_e \): equilibrium gap
- \(s_{jam} \): standstill gap
- \(\tilde{T} \): desired time headway
- \(\beta \): acceleration exponent
- \(\tilde{v} \): desired speed
- \(l \): the vehicle length, 5m
- \(s \): following gap
US and China Comparison

- Fundamental Diagram derived by the IDM model
 - Shoter following gap
US and China Comparison

- Fundamental Diagram derived by the IDM model
 - Larger capacity
Discussion

Better car-following models for simulation in China

• The Wiedemann model is used by the most popular microscopic traffic simulation tool in China—VISSIM®.

• Compared to the Wiedemann, the FVD model showed:
 - Higher performance
 - More stable performance
 - More easily to calibrate: number of parameters 5 vs. 13

• The FVD may be more suitable than Wiedemann to be applied for microscopic traffic simulation in China.
Discussion

Why Chinese drivers following tightly

• Aggressive: lower perception of risk?
• Cultural environment: in a rush?
• Avoiding cut-in?
Conclusions

• The full velocity difference (FVD) model performed best in modeling Chinese drivers’ behavior compared to the GHR, Gipps, IDM, and Wiedemann models.

• According to the IDM model, Chinese drivers adopt shorter desired time headways and following gaps than US drivers.

• Simulation models and components of intelligent vehicles must be calibrated to Chinese conditions before used in China.
THANKS

Corresponding author: Xuesong Wang
E-mail address: wangxs@tongji.edu.cn