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ARTICLE INFO ABSTRACT

Keywords: A model used for velocity control during car following is proposed based on reinforcement
Car following learning (RL). To optimize driving performance, a reward function is developed by referencing
Autonomous driving human driving data and combining driving features related to safety, efficiency, and comfort.

Velocity control

Reinforcement learning

NGSIM

Deep Deterministic Policy Gradient (DDPG)

With the developed reward function, the RL agent learns to control vehicle speed in a fashion that
maximizes cumulative rewards, through trials and errors in the simulation environment. To avoid
potential unsafe actions, the proposed RL model is incorporated with a collision avoidance
strategy for safety checks. The safety check strategy is used during both model training and
testing phases, which results in faster convergence and zero collisions. A total of 1,341 car-
following events extracted from the Next Generation Simulation (NGSIM) dataset are used to
train and test the proposed model. The performance of the proposed model is evaluated by the
comparison with empirical NGSIM data and with adaptive cruise control (ACC) algorithm im-
plemented through model predictive control (MPC). The experimental results show that the
proposed model demonstrates the capability of safe, efficient, and comfortable velocity control
and outperforms human drivers in that it 1) has larger TTC values than those of human drivers, 2)
can maintain efficient and safe headways around 1.2s, and 3) can follow the lead vehicle com-
fortably with smooth acceleration (jerk value is only a third of that of human drivers). Compared
with the MPC-based ACC algorithm, the proposed model has better performance in terms of
safety, comfort, and especially running speed during testing (more than 200 times faster). The
results indicate that the proposed approach could contribute to the development of better au-
tonomous driving systems. Source code of this paper can be found at https://github.com/
MeixinZhu/Velocity_control.

1. Introduction

Car following is the most frequent driving scenario. The main task of car following is controlling vehicle velocity to keep safe and
comfortable following gaps. Autonomous car-following velocity control has the promise of mitigating drivers’ workload, improving
traffic safety, and increasing road capacity (Wang et al., 2013; Zhu et al., 2018a; Zhu et al., 2020).
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Driver models are critical elements of velocity control systems (Wang et al., 2016a; Wang et al., 2016b; Cheng et al., 2020). In
general, the driver models related to car-following behavior are established based on two approaches: the rule-based approach and
the supervised learning approach (Kuefler et al., 2017; Zhang et al., 2011). The rule-based approach mainly refers to traditional car-
following models, such as the Gazis-Herman-Rothery model (Gazis et al., 1961) and the intelligent driver model (Treiber et al., 2000).
The supervised learning approach relies on the data provided through human demonstrations to approximate the relationship be-
tween car-following states and vehicle acceleration actions.

These two approaches all intend to emulate human drivers’ car-following behavior. However, solely imitating human driving
behaviors may not be the best solution for autonomous driving. Firstly, users may not want autonomous vehicles driving in a way like
them (Basu et al., 2017). Secondly, driving should be optimized with respect to safety, efficiency, and comfort, besides imitating
human drivers because human drivers may not drive optimally (Chai and Wong, 2015).

To resolve these problems, this study proposes a car-following model for autonomous velocity control based on reinforcement
learning (RL). This model directly optimizes driving safety, efficiency, and comfort, by learning from interactions with a simulation
environment. Specifically, the deep deterministic policy gradient (DDPG) algorithm (Lillicrap et al., 2015) that performs well in the
continuous control field is utilized to learn an actor-network together with a critic-network. The actor-network is responsible for
policy generation: outputting following vehicle accelerations based on speed, relative speed, and clearance distance. The critic-
network is responsible for policy improvement: update the actor’s policy parameters in the direction of performance improvement. A
reward function is developed by referencing human driving data and combining driving features related to safety, efficiency, and
comfort. To avoid potential unsafe actions, the proposed RL model is incorporated with a collision avoidance strategy for safety
checks. The safety check strategy is used during both model training and testing phases, which results in faster convergence and zero
collisions.

To evaluate the proposed model, real-world driving data collected in the Next Generation Simulation (NGSIM) project (U.D. of
Transportation, 2009) are used to train and test the model. The model is compared with empirical NGSIM data and also an adaptive
cruise control (ACC) algorithm implemented through model predictive control (MPC), to demonstrate the model’s ability to follow a
leading vehicle safely, efficiently, and comfortably.

The major contributions of this paper are:

o Applied RL to real-world driving data for autonomous driving velocity control and developed a framework for multi-objective
autonomous driving planning based on RL.

® Designed a new reward function that incorporates driving safety, efficiency, and comfort, which can lead to stable convergence.

o Incorporated RL with a kinematic collision avoidance strategy for a safety check, which resulted in faster convergence and zero
collisions.

2. Background
2.1. Car following

Car-following models describe the movements of a following vehicle (FV) in response to the actions of the lead vehicle (LV) (Zhu
et al., 2018a). They are essential components of microscopic traffic simulation (Brackstone and McDonald, 1999) and serve as
theoretical references for autonomous car-following systems (Wei et al., 2010). The first car-following model (Pipes, 1953) was
proposed in the middle 1950s, and a number of models have been developed since then, e.g., the Gazis-Herman-Rothery (GHR) model
(Gazis et al., 1961), the intelligent driver model (IDM) (Treiber et al., 2000), the optimal velocity model (Bando et al., 1995), and the
models proposed by Helly (1959), Gipps (1981), and Wiedemann (1974). A detailed review and historical development of this subject
can be found in Brackstone and McDonald (1999) and Saifuzzaman and Zheng (2014).

2.2. Adaptive cruise control

Adaptive Cruise Control (ACC) system is an extension of the conventional Cruise Control (CC) system that helps maintain a
constant vehicle velocity and is closely related to velocity control in the current study. Since constant velocity control becomes less
useful under congested traffic situations, ACC extends CC functionality by dynamically adjusting the ACC host vehicle’s velocity to
maintain a proper clearance distance (a constant time headway policy is usually adopted to determine the distance) between the lead
vehicle and the host vehicle. This is achieved by utilizing various sensors such as radar to measure the relative distance and relative
velocity between the vehicles.

Model Predictive Control (MPC) tends to be the most frequently used control methods for designing ACC algorithms. MPC is a
type of control that at each time step, a sequence of control inputs is obtained by solving a finite-horizon optimization problem and
only the first element of the solved control sequence is applied (Camacho and Alba, 2013). This process repeats at the next time step
with new measurements. One major advantage of MPC is its ability to handle constraints on control inputs (e.g., vehicle acceleration)
and system states (e.g., following distance).

By using a linear and continuous model of car following, Luo et al. (2010) proposed an MPC controller for real-world car-
following situations. The MPC tries to control the following vehicle’s acceleration so that the relative distance between the two
vehicles is in a safe region. Simulation results showed that the MPC controller demonstrated a safer behavior than that of real drivers.
Takahama and Akasaka (2018) developed a practical MPC-based ACC algorithm with a low computational cost that can run on
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embedded microprocessors. Specifically, a low-order prediction model was utilized to decrease the computation load. Results showed
that their algorithm is with high responsiveness and less discomfort. Li et al. (2010) proposed an MPC-based ACC system to address
the issues of tracking capability, fuel economy and driver desired response. A quadratic cost function was used to indicate tracking
errors, fuel consumption, and accordance with driver characteristics. Simulations showed that the developed ACC system has sig-
nificant benefits in terms of fuel economy, tracking capability, and satisfying driver desired car following characteristics. Lefevre
et al. (2015) a learning-based method for autonomous car-following velocity control. A driver model was first developed to reproduce
drivers’ car-following behavior. The driver model’s outputs (vehicle acceleration values) were then served as a reference by the MPC
controller. By solving a constrained optimization problem, the MPC controller can ensure that the vehicle follows the model’s be-
havior and also satisfies some safety criteria.

With the above-mentioned studies showing the power of MPC, this study chose RL for autonomous velocity control for two
reasons: (1) RL is much faster than MPC during testing (Ernst et al., 2008). This is because MPC needs to solve a constrained finite-
time optimal control problem at every time step while RL just needs to takes states as input and output actions; and (2) RL may have
better performances than MPC as demonstrated by Lin et al. (2019).

2.3. Reinforcement learning

Reinforcement learning (RL) optimizes sequential decision-making problems by letting an RL agent interact with an environment.
At time step t, the agent observes a state s, and chooses an action a, from some action space A based on a policy m(a,|s) that maps from
state s, to actions a,. Meanwhile, the system gives a reward r, to the agent, and transits to the next state s, ;. This process continues
until a terminal state is reached, then the agent restarts. The agent intends to get a maximum discounted, accumulated reward
R, = Z:’:O y*r 1k, with the discount factor y € (0, 1] (Li, 2017). In general, there are two types of RL methods: value-based and policy-
based (Sutton and Barto, 1998).

2.3.1. Value-based reinforcement learning

A value function measures the quality of a state or state-action pair. The action value Q” (s, a) = E [R;|s; = s, a; = a] is the ex-
pected return for selecting action a in state s and then following policy . It represents the goodness of taking action a in a state s.
Value-based RL methods intend to infer the action value function from historical experience. Q-learning is a typical value-based RL
method. Beginning with a random Q-function, the agent keeps updating its Q-values based on the Bellman equation (Sutton and
Barto, 1998).

Q(s, a) = E[r + ymaxa'Q(s’, a')] )

The intuition is that: maximum future reward for this state s and action a is the immediate reward r plus maximum future reward for
the next state s’. Based on the estimated Q-values, the optimal policy is to take the action with the highest Q(s, a) to get maximum
expected future rewards.

2.3.2. Policy-based reinforcement learning

Different with value-based methods, policy-based methods try to improve the policy 7 (als;0) directly, by updating its parameters
6 with gradient ascent on E[R;]. A typical policy-based method is REINFORCE, which updates the policy parameters 6 with
Vologr (a;|s;0) R, (Li, 2017).

To reduce the variance of policy gradients and increase learning speed, an actor-critic method is usually adopted. Two learning
agents are used in an actor-critic algorithm: the actor (policy) and the critic (value function). The actor determines which action to
take, and the critic tells the actor the quality of the action and how it should adjust the policy (Grondman et al., 2012).

2.4. Deep reinforcement learning

Deep reinforcement learning refers to reinforcement learning algorithms that use neural networks to approximate value function
V (s;0), policyz (als;0), or system model.

2.4.1. Deep Q-Network

Instead of computing Q(s, a) for each state-action pair, deep Q-learning uses neural network as function approximator to estimate
the action-value function (Mnih et al., 2015). The action is selected with a maximum Q(s, a) value. Deep Q networks (DQN) work well
with discrete action spaces but fail in continuous action spaces, like in our case. To address this, Lillicrap et al. (2015) developed an
algorithm called deep deterministic policy gradient (DDPG). DDPG introduced an actor-critic mechanism to DQN and can be used for
continuous control problems.

2.4.2. Deep deterministic policy gradient

DDPG uses two separate networks to approximate the actor and critic respectively (Lillicrap et al., 2015). The critic network with
weights 62 is responsible for estimating the action-value function Q(s,a|6?). The actor network with weights 6" is responsible for
explicitly representing the agent’s policy u(s |6). As proposed in DQN, experience replay and target network are adopted in DDPG to
facilitate stable and robust learning.
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e Experience replay
A replay buffer was applied to avoid learning from sequentially generated, correlated experience samples. The replay buffer is a
finite-sized cache D that stores transitions (s;, a, 7, S+ ;) sampled from the environment. The replay buffer is continually updated
by replacing old samples with new ones. At each time step, the actor and critic networks are trained on random mini-batches of
transitions from the replay buffer.

e Target network
Target networks are used to represent target values of the main networks, to avoid divergence of the algorithm (Mnih et al., 2015).
Two target networks, Q' (s, aleQ')and,u’ (s]6), were created for the main critic and actor networks respectively. They have the same
architecture with the main networks but with different network parameters 6'. The parameters of target networks are updated by
letting them slowly track the main networks: &' = 76 + (1 — 7)0'witht < 1. In this way, the target values are constrained to update
slowly, greatly enhancing the stability of learning.

The full DDPG algorithm is listed in Algorithm I. It begins with initializing the replay buffer and the actor, critic and corre-
sponding target networks. At each time step, an action a is taken according to the exploratory policy. Then, the reward 1 and new
state 5,41 are observed and stored in the replay memory D. The critic is trained with mini-batches sampled from the replay memory.
Afterward, the actor is updated by performing a gradient ascent step on the sampled policy gradient. Finally, the target networks with
weights 69 and 6 are updated to slowly track the actor and critic networks.

Algorithm 1. DDPG: Deep deterministic policy gradient for car-following velocity control

1: Randomly initialize critic Q(s, a|6?) and actor u(s|6%) networks with weights 62 and 6.

2: Initialize target network Q' (s, a|sQ’) and ;,t'(sle",) with weights 69" — 6 and 6* — o

3: Set up empty replay buffer D

4: for episode = 1 to M do

5 Begin with a random process N for action exploration

6 Observe initial car-following state: initial gap, follower speed, and relative speed

7: fort = 1to T do

8 Calculate reward 1

9 Choose follower acceleration a; = u(s;, 6#) + N; based on current actor network and exploration noise N;

10: Implement acceleration a; and transfer to new state s, based on kinematic point-mass model
11: Save transition (s, a;, 1, S¢+1) into replay buffer D
12: Sample random minibatch of N transitions (s;, a;, 7, si+1) from D
13: Set yi = ri + 7Q' Gir1, 4 (51+1169)16%)
- s 1
14: Update critic through minimizing loss: L = ~ Zi ; — Qsi, a;]69))?
15: Update actor policy using sampled policy gradient: VouJ ~ %Zl VaQ(s, al6D)|s=s;a=u(sp) Vorr (s16)]s;

Q _ 90 _ eQ
16: Update target networks: o , W+ -08 ,
O =10h + (1 — )0

17: end for
18: end for

3. Data preparation

Vehicle trajectory data of the Next Generation Simulation (NGSIM) project (U.D. of Transportation, 2009) were used in this study.
The trajectory data were retrieved from the eastbound of I-80 in the San Francisco Bay area in Emeryville, CA, on April 13, 2005. The
investigation region was around 500 meters (1,640 feet) long and comprised of six freeway lanes, including a high-occupancy vehicle
(HOV) lane. An aggregate of 45 min of data are accessible in the full dataset, divided into three 15-min time spans: 4:00 p.m. to 4:15
p-m.; 5:00 p.m. to 5:15 p.m.; and 5:15 p.m. to 5:30 p.m. These periods contain the congestion buildup, or the inter-state between
uncongested and congested traffic states, and full congestion during a peak period. The data provide precise location information for
each vehicle, with the sampling rate being 10 Hz. To enhance data quality, the reconstructed NGSIM I-80 data (Montanino and
Punzo, 2015) were utilized.

Car-following events were extracted by applying a car-following filter as described in Wang et al. (2018). A car-following event
was defined as:

e The leading and following vehicle pairs stay in the same lane;
e Duration of the event > 15s: ensuring that the car-following persisted long enough to be analyzed.

A total of 1,341 car-following events were extracted and utilized in this study.
4. Features for reward function

In this section, features that capture relevant objectives of the car- following velocity control were proposed, with a final aim to
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construct a proper reward function.
4.1. Safety

Safety should be the most important element of autonomous car following (Pu et al., 2020). Time to collision (TTC) was used to
represent safety. As a widely used safety indicator, TTC represents the time left before two vehicles collide. It is computed as:

Sn—l,n(t)

TTC() =~
n—1,n (t) (2)

where ¢ stands for time; n — 1 and n represent the lead and following vehicles respectively; n — 1, n combination denotes variables
related to both the lead and following vehicles: S,_; , being the clearance distance, and AV},_, , being the relative speed (lead-vehicle
speed — following-vehicle speed).

TTC is inversely related to crash risk (smaller TTC values correspond to higher crash risks and vice versa) (Vogel, 2003). To apply
TTC as a feature reflecting safety, a safety limit (a lower bound of TTC) should be determined. However, different thresholds (from
1.5s to 5s) are reported in the literature (Vogel, 2003). In this study, we tried safety limits from 1s to 9s and found they did not have a
huge impact on the final car-following performance. A final limit of 4s was used because it led to the best overall performance. The
TTC feature was constructed as:

{log(TTc) 0< TTC < 4
Frre = 4
0 otherwise 3)

In this way, if TTC is less than 4s, the TTC feature will be negative. And as TTC approaches zeros, the TTC feature will be close to
negative infinity, which represents a severe punishment to near-crash situations.

4.2. Efficiency

Efficient driving in this study refers to keeping a safe and short time headway. Time headway is defined as the passed time
between the arrival of the lead vehicle (LV) and the following vehicle (FV) at a designated point. Keeping a short headway within the
safety bounds can improve traffic flow efficiency because short headways correspond to large roadway capacities (Zhang et al.,
2007).

The rules of different countries are not quite the same, in regard to the legal or recommended time headway. In the U.S., several
driver training programs state that it is difficult to follow a vehicle safely with headway being less than 2 s. In Germany, the
recommended time headway is 1.8 s, and fines are imposed when the time headway is less than 0.9 s. In Sweden, the police use a time
headway of 1 s as a threshold for imposing fines (Vogel, 2003).

This study determined the appropriate time headway based on the empirical NGSIM data. Fig. 1 presents the distribution of time
headway in all of the extracted 1,341 car-following events. A lognormal distribution was fit on the data. The lognormal distribution is
a probability distribution whose logarithm has a normal distribution. The probability density function of the lognormal distribution
is:

1 —<1nx—2m2
flognorm (xlu, @) = xa\/ﬁe 2 x>0 4

where x is the distribution variable, time headway in this study, and u, o are the mean and log standard deviation of the variable x,

—— Empirical ]
= Lognormal fit

Probability density function

0 1 2 3 4 5 6 7 8
Time headway (s)

Fig. 1. Distribution of time headway in car-following events extracted from the NGSIM data.
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respectively. Based on the empirical data, the estimated u and o were 0.4226 and 0.4365 respectively.
A headway feature was constructed as the probability density value of the estimated headway lognormal distribution:

Fheadway = flognorm (headway|u = 0.4226, o = 0.4365) (5)

According to this headway feature, headway being 1.26s corresponds to the largest headway feature value (about 0.65); while
headways being too long or too short correspond to low feature values. In this way, the RL agents are encouraged to keep a constant
time headway around 1.26s. Note that to encourage a constant time headway, a density function of a normal distribution can also be
used, but we found that the fitted lognormal density function happened to be better than a normal counterpart, which leads to
unstable model performances.

4.3. Comfort

Jerk, defined as the change rate of acceleration, was used to measure driving comfort because it has a strong influence on the
comfort of the passengers (Jacobson et al., 1980). A jerk feature was constructed as:

jerk?
3600° (6)

‘jerk = —

with smaller values of jerk features corresponding to less comfortable driving. The squared jerk was divided by a base value (3600) to
scale the feature into the range of [0 1]. The base value was determined by the following intuition:

1. The sample interval of the data is 0.1s;
2. The acceleration is bounded between —3 to 3 m/s® based on the observed FV acceleration of all the car-following events;
3. Therefore the largest jerk value is 39 — 60 m/ s3, if squared, we get 3600.

5. Proposed approach

Since vehicle acceleration is a continuous variable, deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) algorithm
was used. In this section, the approach proposed to learn the velocity control strategy using DDPG is explained.

5.1. State and action

At a certain time step t, the state of a car-following process is described by the FV speed V, (t), clearance distance S,_; ,(t), and
relative speed AV, _, ,(t). The action is the longitudinal acceleration of the FV a, (t). Given state and action at time step t, the next-step
state is updated by a kinematic point-mass model:

Vot + 1) =V, (t) + a,(t) * AT
AV n(t+ D) =Vt + D) - Vit + 1)
Sn—l,n(t + 1) - Sﬂ—l,n(t) + AVn—l,n(t)+2AVn—l,n(t+ ) « AT *
where AT is the simulation time interval, set as 0.1s in this study, and V;,_; is the velocity of lead vehicle (LV), which was externally
inputted.

5.2. Simulation setup

To enable the RL agent to learn from trial and error, a simple numerical car-following simulation environment was implemented.
The simulation only involves two agents: the LV and the FV, with the LV following empirical data while the FV controlled by the RL
algorithm. Initialized with the empirically given following vehicle speed, clearance distance and velocity differences,
Vo(t = 0) = V(¢ = 0), S,_1,,(t = 0) = S (¢t = 0), andAV,_, ,(t = 0) = AV ¢ (t = 0), the RL agent is used to compute the ac-
celeration a, (t) of the FV. Given acceleration, future FV velocity, relative speed, and clearance distance are then generated iteratively
based on Eq. (7). At each time step, the simulation environment provide a reward value (calculated based on time headway, TTC, and
jerk) to the RL agent as feedback. Once a car-following event reaches its ending, the state is re-initialized with empirical data of the
next event. The events were randomly shuffled to avoid the impact of sequence.

5.3. Reward function

The reward function, r(s, a), serves as a training signal to encourage or discourage behaviors in the context of a desired task. For
the task of autonomous car following, a reward function was established based on a linear combination of the features constructed in
Section 4:

r = w Frre + WZFheadway + WSF}'erk (€3))

where w;, w,, and wj are coefficients of the features, all set as 1 in the current study.
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Fig. 2. Architecture of the actor and critic networks.

5.4. Network architecture

The actor and critic was each represented by a neural network. The input of the actor network is the state at time step t,
st = (Vo (t), AV, 4(t), Sp—1.0(t)). Its output is FV’s acceleration a, (t). The input of the critic network is a state-action pair (s, a;). Its
output is a scalar Q-value Q(s;, a,).

Fig. 2 presents the architectures of the actor and critic networks (Zhu et al., 2018b). Both of them consist of three layers: an input
layer, an output layer, and a hidden layer with 30 neurons. Deeper neural networks with more than one hidden layer were also tested,
but the results showed that they did not perform significantly better.

For the hidden layers, the Rectified Linear Unit (ReLU) activation function (f(x) = max(0, x)) was used. The ReLU can accelerate
the convergence of network parameter optimization (Krizhevsky et al., 2012; Huang et al., 2019). For the output layer of the actor
network, a tanh activation function was used. The tanh function maps real-valued numbers to the range [ —1, 1] and thus can bound
the outputted accelerations between —3 to 3 m/s>.

5.5. Network update and hyper parameters

The parameters of the networks were updated based on Kingma and Ba (2014) optimization algorithm. The critic network was
updated by minimize the loss function L = %Zl O — Q(s, a;|69))?; the actor network was updated according to the gradient
Voul = %Zl VaQ(s, al6) ls=sya=u(s) Voru (s|6¥)|y; (Lillicrap et al., 2015).

The hyperparameters (parameters set prior to the training process) adopted are presented in Table 1, these values were de-
termined according to Lillicrap et al. (2015) and also by performing a test on a randomly sampled training dataset.

5.6. Exploration noise of action

An exploration policy was constructed by adding noise sampled from a noise process to the original actor policy. as suggested by
Lillicrap et al. (2015), an Ornstein—Uhlenbeck process (Uhlenbeck and Ornstein, 1930) with 6 = 0.15 and 0 = 0.2 was used. The
Ornstein—Uhlenbeck process models the velocity of a Brownian particle with friction, generating temporally correlated values cen-
tered around zero. The temporally correlated noise enables the agent to explore well in a physical environment that has momentum.

Table 1
Hyperparameters and corresponding descriptions.
Hyperparameter Value Description
Learning rate 0.001 The learning rate used by Adam
Discount factor 0.90 Discount factor gamma used in the Q-learning update
Minibatch size 1024 Number of training cases over which each stochastic gradient descent (SGD) update is computed
Replay memory size 20000 Number of training samples in the replay memory
Soft target update 7 0.001 The update rate of target networks
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5.7. Collision avoidance strategy

Although the safety rewards will penalize situations with small TTC values, it is still possible that the agent will take unsafe
actions that lead to collisions, even after convergence. These potential collisions are not acceptable for safety-critical applications like
autonomous driving. They can also result in simulation resets and thus slow down the training process (Nageshrao et al., 2019). To
address this issue, several approaches have been proposed in previous studies, like barrier functions (Cheng et al., 2019) and explicit
reference governor (Liu et al., 2019). In this study, we incorporated RL with a collision avoidance strategy for safety check that is
used both while training and also during the implementation phase. This solution turned out to be effective and easy to understand.

Specifically, a kinematic-based stop distance algorithm (Wilson et al., 1997) was used. The algorithm determines the situation is
unsafe if the range between the LV and FV is less than a safe distance threshold d,,, as defined by the following equation:

V2 V2
dmfe = VuRT + n_ el
20max 20max ()]

where RT is the FV’s reaction time (specified as 1s in this study), and a,,,, is the assumed max absolute deceleration rate (3 m/s?). This
basic idea behind this stop distance algorithm is that if the vehicle can keep a following distance larger than dy, it should be able to
avoid the collision in case the LV suddenly takes a full brake. During both the training and testing phases of the DDPG model, the
collision avoidance algorithm was integrated with the RL algorithm in the following way:

a ([) _ - 3m/s2 Sn—l,n < dsafe
" DDPG model output otherwise. (10)

That is, once the following distance is less than dy, the vehicle will take a hard brake, otherwise, it will follow the DDPG model’s
outputs. In this way, the collision avoidance algorithm acts as a teacher and provides corrective action when necessary. The in-
corporation of collision avoidance strategy resulted in faster convergence (as will be mentioned in the next section) and zero col-
lisions both while training and also during testing (without collision avoidance, 447 collisions occurred during 3000 episodes of
training).

5.8. Training the DDPG velocity control model

For the 1,341 extracted car-following events, 70% (938) were used for training, and 30% were used for testing. At the training
stage, the RL agent sequentially simulates the randomly shuffled car-following events in the training data. That is, when a car-
following event terminates, a new event is randomly selected from the 938 training events, and the state of the agent is initialized
with the empirical data of the new one. The training was repeated for 3000 episodes. An episode in this study means a car-following
event.

Fig. 3 shows the changing of rolling mean episode reward with respect to the training episode. The mean episode reward is the
average reward aggregated across all the time steps (sampling interval = 0.1s) of a car-following event, and the rolling mean episode
reward is the average of mean episode rewards across a rolling window with size 100. Multiple runs of training were conducted and
the results were aggregated: solid colored lines represent the mean across multiple runs and shaded areas represent the mean +
standard deviation interval. For easy interpretation of the reward values, the mean performances (aggregated across all the training
episodes) of human drivers and the MPC-based ACC algorithm are also added for references.
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Fig. 3. Changing of reward during the training. Solid colored lines represent the mean and shaded areas represent the mean + standard deviation
interval. For easy interpretation, the mean performances of human drivers and MPC-based ACC algorithm are also added for references.
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As can be seen, with the collision avoidance strategy, the DDPG model starts to converge when the training episode reaches
around 250, faster than the one without collision avoidance strategy. When the model converges, the agent receives a reward value of
about 0.64. This is achieved by selecting actions in a way that makes TTC and jerk feature values near 0 and get maximum headway
features (0.65).

5.9. ACC baseline based on MPC
This section describes the ACC baseline algorithm implemented through MPC.

5.9.1. System model
The same kinematic point-mass model as mentioned in Equation was used but was written in matrix form as:

x(t+ 1) = Ax(t) + Bu(t) an

where t is the sampling time step (sampling interval = 0.1s), x(t) = (Sp—1,,(£), AVy_1, (), Vi (O)T, u(t) = a,(t), and

1 AT 0

A=]0 1 0
0 0 1 (12)

— 0.5AT?

B=| —AT
AT (13)

5.9.2. Control objectives and constraints

The primary goal of an ACC is to follow the lead vehicle at a desired distance §n_1'n. A constant time headway t,,, was adopted in
this study, yielding

gn—l,n = Vnthw (14)

where t;, = 1.2s in this study, which is consistent with the final time headway distribution generated by the DDPG algorithm.

Safety and comfort were considered by minimizing the absolute values of relative speed and jerk, respectively. The constraints
include the following distance should be larger than 0 to avoid collisions; the velocity of the following vehicle should not be less than
0; and the acceleration of the following vehicle should be within a certain range.

5.9.3. MPC formulation
A constrained linear-quadratic MPC model was used, which solves at each time step the following finite-horizon optimal control
problem

N-1 ~ )
min z [(Sn—l,n(t) - Sn—l,n(t))z + (AVn—l,n)z + (]el’k(t))z]

purd Smax AVipax Jjerk,, .. (15)
s.t. x(t+1)=Ax(t) + Bu(t) (16)
Sp_1n >0 17
Vo> 0 (18)
- 3m/s* < a, < 3m/s? (19)

where N is the prediction horizon (N = 10 in this study), Smax AViuax, and jerk,,,. are constants to normalize different kinds of
tracking errors (Syqe = 15m, AViu = 8 m/s, and jerk,,,. = 60 m/s* in this study), and a = [a(0), a(1), ..,a(N — 1)] is the action se-
quence to be solved. After obtaining the optimal action sequence, only the first action a (0) will be applied, and the process repeats at
the next time step.

6. Results

In this section, car-following behavior observed in the empirical NGSIM data and that simulated by the DDPG and the MPC-based
ACC models are compared, to demonstrate the model’s ability to follow a leading vehicle safely, efficiently, and comfortably. All the
analyses are based on testing data, and no collisions were observed for the DDPG model. The DDPG model produces the following
vehicle trajectories by taking the leading vehicle trajectories as input.

6.1. Safe driving

Driving safety is evaluated based on TTC during the car-following events. Fig. 4 shows the cumulative distributions of TTC for
NGSIM empirical human data, DDPG simulation, and MPC-based ACC simulation. For better interpretation, only TTC values in the
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Fig. 4. Empirical cumulative distribution of TTC during car following.

range of 0 to 50s were presented. As can be seen, the DDPG model has larger TTC values than those of human drivers and MPC-based
ACC algorithm. This means that car-following behavior generated by the DDPG model is safer than drivers’ behavior observed in the
NGSIM data and MPC-based ACC algorithm. Also, no collisions were observed with the DDPG model in both the training and testing
phases.

6.2. Efficient driving

Driving efficiency was evaluated based on time headway during the car-following process. Time headway was calculated at every
time step of a car-following event, and the cumulative distributions of these time headways are shown in Fig. 5. The average time
headway for the DDPG model, MPC-based ACC algorithm, and human drivers are 1.24s, 1.23s, and 1.61s, respectively. As can be
seen, both the DDPG model and the MPC-based ACC algorithm produced car-following trajectories that maintained a time headway
around 1.2s. While the NGSIM data had a much wider range of time headway distribution (0s to 6s). This included some dangerous
headways that were less than 1s, and also some inefficient headways that were larger than 3s. Therefore, it can be concluded that
both the DDPG model and the MPC-based ACC algorithm can follow the leading vehicle with an efficient and safe time headway.

6.3. Comfortable driving

Driving comfort was evaluated based on jerk values during the car following process. Similar to time headway, it was calculated
for every time step of a car-following event. Fig. 6 presents the cumulative distributions of jerk values during the car following events.
The The mean values of jerk for the DDPG model, MPC-based ACC algorithm, and human drivers are 0.63 m/s?, 0.70 m/s’, and 1.73
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Fig. 5. Empirical cumulative distribution of time headway during car following.

10



M. Zhu, et al. Transportation Research Part C 117 (2020) 102662

100 { = DDPG e
=== MPCACC
— Human
9
z 801
o
5
a
8 60+
o
CIJ
2
©
>
£ 40
=1
o
©
9
S p
g 20
w
Q=== == = B e >
-20 -15 -10 -5 0 5 10 15 20
Jerk (m/s”3)

Fig. 6. Empirical cumulative distribution of jerk during car following.

m/s?, respectively. It is obvious that the DDPG model and the MPC-based ACC algorithm produced trajectories with lower values of
jerk. As smaller absolute values of jerk correspond to more comfortable driving, it can be concluded that the DDPG model can control
vehicle velocity in a more comfortable way than human drivers in the NGSIM data and is slightly better than the ACC algorithm.

6.4. Demonstrations with sampled events

To give illustrations of the safe and comfortable driving of the DDPG model, two car-following events were randomly chosen from
the NGSIM dataset. Fig. 7 and 8 show the observed speed, spacing, TTC, acceleration, and jerk, and the corresponding ones generated
by the DDPG model and the MPC-based ACC algorithm. For better interpretation, TTC values were bounded in the range of —2 to 50s
(i.e., TTC values larger than 50s were set as 50s, and those less than —2s were set as — 2s). In some time intervals (e.g., 12 to 15s in
Fig. 7), the driver in the NGSIM data drove in a way that produced very small TTC values, while the DDPG model keeps larger TTC
values. Also, the driver in the NGSIM data drove in a way with frequent acceleration changes and large jerk values, while the DDPG
model can remain a nearly constant acceleration and produced low jerk values.

To summarize, the DDPG model demonstrated the capability of safe, efficient, and comfortable driving in that it 1) has larger TTC
values than those of human drivers and the MPC-based ACC algorithm, 2) could maintain efficient and safe headways within the
range of 1s to 2s, and 3) followed the leading vehicle comfortably with smooth acceleration.

It should be noted that although the DDPG model performed only slightly better than the MPC-based ACC algorithm, it has the
following advantages versus the MPC one:

o The proposed RL method has a faster running speed during the testing phase. Specifically, with the 403 car-following events in the
testing data, the total running time of the DDPG model and the MPC-based ACC algorithm are 20.7s and 5305.9s, respectively.
The average running time per car-following event of the DDPG model (0.05s) is much shorter than that of the MPC-based ACC
algorithm (13.17s). The reason is that MPC needs to solve a constrained finite-time optimal control problem at every time step
while RL only needs to take states as input through the actor-network and output actions.

For the MPC-based ACC algorithm, sometimes the optimizer may not be able to find a feasible solution to the constrained finite-
time optimal control problem. This will cause failed future vehicle acceleration generation. However, this is not the case for the
proposed RL method, which generates future accelerations based on the actor-network, without the need for solving an opti-
mization problem. Moreover, the proposed RL method is incorporated with a collision avoidance strategy for a safety check in
case the actor-network generates wrong actions.

The proposed RL method has fewer TTC values that are in the range of 0 to 10s than the MPC one, which means it is safer than the
MPC-based ACC algorithm.

7. Discussion and conclusion

To sum up, this study uses RL to learn how to control vehicle velocity during car following in a safe, efficient, and comfortable
way. Human driving data of the real world, from the NGSIM study, were used to train the model. The model was compared with an
MPC-based ACC algorithm and the empirical NGSIM data, to evaluate the model’s performance. Results show that the proposed
model demonstrated the capability of safe, efficient, and comfortable driving, and significantly outperformed human drivers.
Compared with the MPC-based ACC algorithm, the proposed model has better performance in terms of safety, comfort, and especially
running speed during testing. The results indicate that reinforcement learning methods could contribute to the development of
autonomous driving systems.
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Fig. 7. #1 sampled car-following trajectories for comparing the performance of NGSIM human drivers, DDPG model, and the MPC-based ACC
algorithm.

The proposed model can be further extended in the following aspects:

1. More objectives can be added, such as energy-saving driving.

. The weights of the objectives can be adjusted to reflect users’ individual preferences.

3. More complicated reward function forms can be adopted to express more complex reward mechanisms, such as a non-linear
function.

N

This study can further be improved by designing better experience replay mechanisms. Experience replay lets RL agents re-
member and reuse experiences from the past. In the currently adopted DDPG algorithm, experience transitions were uniformly
sampled, without considering their significance (Schaul et al., 2015). In future work, prioritizing experience can be utilized to replay
important transitions more frequently, and therefore learn in a more efficient way.

12
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